Titanic幸存预测分析(Kaggle)
Posted jvfjvf
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Titanic幸存预测分析(Kaggle)相关的知识,希望对你有一定的参考价值。
分享一篇kaggle入门级案例,泰坦尼克号幸存遇难分析。
参考文章: 技术世界,原文链接 http://www.jasongj.com/ml/classification/
-
案例分析内容:
通过训练集分析预测什么人可能生还,并对测试集中乘客做出预测判断
-
案例分析
-
加载包
1 library(dplyr) #bind_rows() 2 library(ggplot2) #绘图 3 library(ggthemes) 4 library(InformationValue) #计算WOE和IV 5 library(stringr) #数据处理 6 library(rpart) #预测乘客年龄 7 library(scales) #dollar_format() 8 library(party) #cforest() 9 library(gbm) #AdaBoost 10 library(MLmetrics) # Mache learning metrics.e.g. Recall, Precision, Accuracy, AUC
-
加载文件
1 train <- read.csv("F:\\\\R/泰坦尼克幸存分析/train.csv",header = T,stringsAsFactors = F) #ID 1~891乘客信息 2 test <- read.csv("F:\\\\R/泰坦尼克幸存分析/test.csv",header = T,stringsAsFactors = F) #ID 892~1309号乘客信息(缺少是否存活信息) 3 test_survived <-read.csv("F:/R/泰坦尼克幸存分析/gender_submission.csv",header = T,stringsAsFactors = F) #ID 892~1309号 是否存活信息
-
数据整理
1 #合并训练数据和测试数据 2 data <- bind_rows(train,test) 3 ##Sex:性别,Age:年龄,SibSP:配偶/兄妹数,Parch:父母/子女数,Ticket:船票号 4 ##Fare:费用,Cabin:舱位区域,Pclass:舱位等级,Embarked:到达码头,Title:头衔 5 #将是否存活设为因子 6 data$Survived <- as.factor(data$Survived) 7 train$Survived <-as.factor(train$Survived) 8 test$Survived <- as.factor(test$Survived)
-
统计幸存和遇难人数是否与舱位等级有关
1 ggplot(data = data[1:nrow(train),],aes(Pclass,..count..,fill=factor(Survived)))+ #载入训练数据分析 2 geom_bar(stat = \'count\',position = \'dodge\')+ 3 labs(title=\'舱位等级对乘客存活影响\',x=\'舱位等级\',y=\'存活人数\',fill=\'Survived\')+ #fill为图例标题属性 4 scale_fill_discrete(limits=c(0,1),labels=c(\'遇难\',\'获救\'))+ #修改图例标签文本 5 scale_x_continuous(breaks=c(1,2,3),labels=c(\'头等舱\',\'二等舱\',\'三等舱\'))+ #修改X轴刻度文本 6 geom_text(stat = "count",aes(label=..count..),position = position_dodge(width = 1),vjust=-0.3)+ #添加数据标签 7 theme(plot.title = element_text(hjust = 0.5)) #修改标题位置
可以看到,头等舱的乘客获救率是最高的,舱位等级越高,获救几率越大
-
计算舱位等级(Pclass)的WOE和IV
1 class(data$Pclass) #查看变量(舱位)类型,求WOE时需要转换为因子 2 WOETable(X = factor(data$Pclass[1:nrow(train)]),Y = data$Survived[1:nrow(train)]) 3 IV(X = factor(data$Pclass[1:nrow(train)]),Y = data$Survived[1:nrow(train)] )
-
为了更为定量的计算Pclass的预测价值,可以算出Pclass的WOE和IV如下。从结果可以看出,Pclass的IV为0.5,且“Highly Predictive”。由此可以暂时将Pclass作为 预测模型的特征变量之一。
-
统计不同title(头衔)的乘客存活率
- 训练集中给出了乘客姓名,其中含有MR,Capt等常见称号,这通常标志着一个人处于的社会阶层,所以猜测可能与存活率存在一定联系。接下来要进行分类整理。提取出Name中的title标签,并进行分类。
-
1 data$Title <- sapply(data$Name,FUN=function(x){strsplit(x,split = \'[,.]\')[[1]][2]}) #依次提取出每行的title标签 2 #head(strsplit(data$Name,split = \'[,.]\')[[1]][2]) 3 head(data$Title) 4 data$Title <- sub(pattern = \' \',replacement = \'\',data$Title) 5 data$Title[data$Title %in%c(\'Mme\',\'Mlle\')] <-\'Mlle\' 6 data$Title[data$Title %in%c(\'Capt\',\'Don\',\'Major\',\'Sir\')] <-\'Sir\' 7 data$Title[data$Title%in%c(\'Dona\',\'Lady\',\'thhe Countess\',\'Jonkheer\')] <-\'Lady\' 8 data$Title <- factor(data$Title)
-
抽取完乘客Title后,绘图观察
1 ggplot(data = data[1:nrow(train),],aes(x = Title,y = ..count..,fill=factor(Survived)))+ 2 geom_bar(stat = \'count\')+ 3 geom_text(stat = \'count\' ,aes(label=..count..),position = position_stack(vjust = 0.85))+ 4 labs(title=\'头衔是否影响存活率\',x=\'尊称/头衔\',y=\'人数\',fill=\'Survived\')+ 5 theme(plot.title = element_text(hjust =0.55))+ 6 scale_fill_discrete(limit=c(0,1),labels=c("遇难","获救"))+ 7 theme_economist()
观察图中不难发现,图中Master,Miss,Mlle,Mrs,Ms获救比例均超过50%,而Mr的获救比例不到15.7%。接下来计算WOE和IV,
查看Title这一变量对于最终的预测是否有用
-
计算头衔(Title)的WOE和IV
1 WOETable(X = factor(data$Title[1:nrow(train)]),Y = factor(data$Survived[1:nrow(train)]))
2 IV(X = factor(data$Title[1:nrow(train)]),Y = factor(data$Survived[1:nrow(train)]) )
IV为1.520702,且”Highly Predictive”。因此,可暂将Title作为预测模型中的一个特征变量。
-
猜测性别和存活率有关
1 ggplot(data = data[1:nrow(train),],aes(x =Sex,y = ..count..,fill=factor(Survived)))+ 2 geom_bar(stat=\'count\',position = \'fill\')+ 3 geom_text(stat = \'count\',aes(label=..count..),position = \'fill\',vjust=1)+ 4 labs(title="性别是否影响存活率",fill="Survived",x=\'性别\',y=\'获救比例\')+ 5 scale_x_discrete(breaks = c(\'female\',\'male\'),labels = c(\'女\',\'男\'))+ 6 scale_fill_discrete(limits=c(0,1),labels=c(\'遇难\',\'获救\'))
泰坦尼克号遇难之际,船上乘客秉承‘女士优先’的原则,实际情况是,75%的女性乘客获救,而仅有不到25%的男性乘客获救,这也充分说明了这 一原则的真实性。
-
计算性别(Sex)的WOE和IV
WOETable(X = factor(data$Sex[1:nrow(train)]),Y = factor(data$Survived[1:nrow(train)]))
IV(X =factor(data$Sex[1:nrow(train)]),Y = factor(data$Survived[1:nrow(train)]) )
为高预测变量
-
统计年龄与存活率是否有关
1 summary(data$Age[1:nrow(train)]) 2 ggplot(data = data[!is.na(data$Age),],aes(Age,linetype=Survived,color=Survived))+ 3 geom_line(stat=\'bin\',bins=10,size=0.8)+ 4 labs(title=\'年龄是否与存活率有关\',x=\'年龄\',y=\'人数\',color="Survived",linetype="Survived")+ 5 scale_color_discrete(limits=c(0,1),labels=c(\'遇难\',\'获救\'))+ 6 scale_linetype_discrete(limits=c(0,1),labels=c(\'遇难\',\'获救\'))+ 7 theme_stata()
除了女士优先,老弱人士可能也是优先照顾的对象,图中显示,20岁以下的人员获救比例确实较高,而25岁左右的青年人士获救人数最多,但遇难的人数也接近200人。
-
统计(SibSp)配偶/兄弟姐妹人数同时在船对存活率是否有影响
1 ggplot(data = train,aes(x=as.factor(train$SibSp),fill=Survived))+geom_bar(stat=\'count\',position = \'dodge\')+ 2 geom_text(stat = \'count\',position = position_dodge(width = 1),aes(label=..count..),vjust=-0.1)+ 3 labs(x=\'亲属人数\',y=\'人数\',title=\'配偶/兄弟姐妹人数对存活率是否有影响\')+ 4 scale_fill_discrete(limits=c(0,1),labels=c(\'遇难\',\'获救\'))+ 5 theme(plot.title = element_text(hjust = 0.5))
训练集中提供了乘客配偶或兄弟姐妹的人数,观察后发现没有亲属在船上的人数较多,沉船时,独身出行的乘客获救几率只有34%,有1~2名配偶或兄弟姐妹同时在船上时,该名乘客获救几率也较高。而人数达 4人以上时,几乎同时遇难。
-
统计SibSp的WOE和IV
WOETable(X = factor(train$SibSp),Y = factor(train$Survived))
IV(X = factor(train$SibSp),Y = factor(train$Survived))
IV为0.1449,为高预测性变量
-
统计Parch(父母/子女人数)对存活率影响
1 ggplot(data = train,aes(Parch,fill=Survived))+ 2 geom_bar(stat=\'count\',position = \'dodge\')+ 3 labs(title=\'父母/子女数对存活率是否有影响\',x=\'父母/子女数\',y=\'人数\')+ 4 geom_text(aes(label=..count..),stat = \'count\',position = position_dodge(width = 1),vjust=-0.1)+ 5 scale_fill_discrete(limits=c(0,1),label=c(\'遇难\',\'获救\'))+ 6 theme(plot.title = element_text(hjust = 0.5))
Parch列中提供的为乘客的父母/子女人数(同时在船),探究是否该变量会影响存活率。由图可看出,当船上没有自己的父母或者子女时,乘客存活率与SibSp情况相仿,不足1/3。当船上Parch数为1~3人时,获救率高于50%。
-
计算Parch的WOE和IV
WOETable(X = factor(train$Parch),Y = factor(train$Survived))
IV(X = factor(train$Parch),Y = factor(train$Survived))
计算Parch得0.116,认为高预测变量
-
找出Ticket与存活率关系,共享船票号的可能为一家人,单独船票为独身一人,分成两组进行比较。
1 ticket.count <- aggregate(data$Ticket,by=list(data$Ticket),function(x)sum(!is.na(x))) 2 #整合船票号,记录重复的次数,ticket.count记录这两列(有序),但data中船票号分布是无序的 3 head(ticket.count) 4 data$TicketCount <- apply(X = data,MARGIN = 1,FUN = function(x)ticket.count[which(ticket.count[,1]==x[\'Ticket\']),2]) 5 #主体(X)为data,将ticket.count中的船票号(有序)与data$Ticket(无序)进行一一对应 6 head(data$TicketCount) 7 data$TicketCount <- factor(sapply(X = data$TicketCount,FUN = function(x)ifelse(x>1,\'Share\',\'Unique\'))) 8 #重复次数>1则说明为共享船票,=1为独自一人.比较两组人员的存活率.
数据集中提供了Ticket列,提供了乘客的船票号。整合船票号,发现存在重复的船票号,猜想可以与家庭共享船票号有关。前面得存活率与SibSP和Parch有关,现可将Ticket分成两类,一类为家庭共享船票,一类为独自乘船所用船票号。
1 #重复次数>1则说明为共享船票,=1为独自一人.比较两组人员的存活率. 2 ggplot(data,aes(TicketCount,..count..,fill=factor(Survived)))+ 3 geom_bar(stat = \'count\',position = \'dodge\')+ 4 labs(title=\'船票号与存活率联系\',x=\'船票号\',y=\'人数\',fill=\'Survived\')+ 5 geom_text(stat = \'count\',aes(label=..count..),position = position_dodge(width = 0.9),vjust=-0.1)+ 6 scale_fill_discrete(limits=c(0,1),labels=c(\'遇难\',\'获救\'))+ 7 theme(plot.title = element_text(hjust = 0.5))
图可看出,共用一张船票的家庭,存活率为50%,而单张船票(即独自出行)的乘客,遇难的可能性高达73%
-
计算TicketCount的WOE和IV
1 WOETable(X = factor(data$TicketCount),Y = factor(data$Survived)) ## CAT GOODS BADS TOTAL PCT_G PCT_B WOE IV ## 1 share 308 288 596 0.6234818 0.3533742 0.5677919 0.1533649 ## 2 unique 186 527 713 0.3765182 0.6466258 -0.5408013 0.1460745
1 > IV(X = factor(data$TicketCount),Y = factor(data$Survived)) ## [1] 0.2994394 ## attr(,"howgood") ## [1] "Highly Predictive"
IV为0.29,且为Highly Predictive
-
统计船费(Fare)和存活率关系
船费与舱位等级和行程距离有关,已知存活率与舱位等级(Pclass)存在一定关系,猜想船费可能也存在关系
1 summary(data$Fare) 2 class(data$Fare) 3 ggplot(data[!is.na(data$Fare),],aes(x = Fare,color=factor(Survived)))+geom_line(stat = \'bin\',binwidth=10,size=1)+ 4 labs(title=\'船费是否影响存活率\',x=\'船费\',y=\'人数\',color=\'Survived\')+ 5 scale_color_discrete(labels=c(\'遇难\',\'获救\'))+ 6 theme(plot.title = element_text(hjust=0.5))
由图可看出,船费超过100元的乘客几乎都获救
-
计算Fare的WOE和IV
WOETable(X = factor(data$Fare),Y = data$Survived)
IV(X = factor(data$Fare),Y = data$Survived) [1] 0.709573 attr(,"howgood") [1] "Highly Predictive"
同样Fare为高预测变量
-
统计舱位区域(Carbin)对存活率影响
对于Cabin变量,其值以字母开始,后面伴以数字。这里有一个猜想,字母代表某个区域,数据代表该区域的序号。类似于火车票即有车箱号又有座位 号。因此,这里可尝试将Cabin的首字母提取出来,并分别统计出不同首字母仓位对应的乘客的幸存率。
1 data$Cabin_level <- substr(x = data$Cabin,start = 1,stop = 1) 2 ggplot(data,aes(data$Cabin_level,fill=Survived))+geom_bar(stat = \'count\',position = \'dodge\')+ 3 geom_text(stat = \'count\', aes(label=..count..),position = position_dodge(width = 1),vjust=-0.1)+ 4 labs(title=\'舱位区域对存活率影响\',x=\'舱位\',y=\'人数\')+ 5 scale_fill_discrete(label=c(\'遇难\',\'获救\'))
Cabin变量中存在的空字符串较多,分析其他得B,C,D,E舱的乘客幸存率远高于50%,其他舱的乘客则低于50%。
-
计算data$Cabin_level的WOE和IV
WOETable(X = factor(data$Cabin_level),Y = data$Survived)
IV(X = factor(data$Cabin_level),Y = data$Survived)
-
统计登船码头是否与存活率有关
1 ggplot(train,aes(Embarked,fill=Survived))+geom_bar(stat = \'count\',position = \'dodge\')+ 2 geom_text(stat = \'count\',aes(label=..count..),position = position_dodge(width = 1),vjust=-0.1)
到达C码头的乘客获救率高于50%,而到达S码头的乘客遇难人数达427人,幸存率仅有29%
-
计算Embarked(登船码头)WOE和IV
-
列出所有缺失数据
研究完变量后,接下来要对缺失数据进行处理
1 attach(data) 2 head(missing) 3 missing<- list(Pclass=nrow(data[is.na(Pclass),])) 4 missing$Name <- nrow(data[is.na(Name),]) 5 missing$Sex <- nrow(data[is.na(Sex),]) 6 missing$Age <- nrow(data[is.na(Age),]) 7 missing$SibSp <- nrow(data[is.na(SibSp),]) 8 missing$Parch <- nrow(data[is.na(Parch),]) 9 missing$Ticket <- nrow(data[is.na(Ticket),]) 10 missing$Fare <- nrow(data[is.na(Fare),]) 11 missing$Cabin <- nrow(data[which(data$Cabin==\'\'),]) 12 missing$Embarked <- nrow(data[which(data$Embarked==\'\'),]) 13 #names(missing) 14 #missing[["Cabin"]][1] 15 for (name in names(missing)) { 16 if(missing[[name]][1]>0){ 17 print(paste(\'\',name,\' miss \',missing[[name]][1],\' values\',sep=\'\')) 18 } 19 } 20 detach(data)
-
预测乘客年龄
乘客年龄数据共缺失263条,缺失量较大,不适合使用中位数或均值填补,通过使用其它变量预测或者直接将缺失值设置为默认值的方法填补,这 里通过其它变量来预测缺失的年龄信息。
1 age.model <- rpart(Age~Pclass+factor(Sex)+SibSp+Parch+Fare+factor(Embarked)+Title,data = data[!is.na(data$Age),],method = \'anova\') 2 data$Age[is.na(data$Age)] 3 data$Age[is.na(data$Age)] <- predict(age.model,data[is.na(data$Age),])
-
中位数填补缺失的Embarked值
查看缺失码头,发现船费都为80,猜想船费与舱位和到达码头有关。绘图查看后发现到达码头C的头等舱船票为80,可以将该缺失的空值补为C
1 ggplot(data[which(data$Embarked!=\'\'),],aes(Embarked,Fare,fill=factor(Pclass)))+ 2 geom_boxplot()+ 3 geom_hline(yintercept = 80,color=\'red\',linetype=2,lwd=1)+ 4 scale_y_continuous(labels = dollar_format())+ 5 labs(title=\'船费和舱位及登船码头的关系\',x=\'登船码头\',y=\'船费\',fill=\'舱位等级\')+ 6 theme(plot.title = element_text(hjust=0.5),panel.grid.major = element_blank())+ 7 scale_fill_discrete(label=c(\'头等舱\',\'二等舱\',\'三等舱\'))
1 data$Embarked[which(data$Embarked==\'\')] <- \'C\'
2 data$Embarked <- as.factor(data$Embarked)
-
补船费的缺失值
船费和舱位等级,到达码头存在联系,已知另外两个条件,不难猜出船费为多少,将缺失的船费的数据补齐
1 data[is.na(data$Fare),c(\'Pclass\',\'Embarked\')] 2 summary(data[which(data$Pclass==\'3\'&&data$Embarked==\'S\'),\'Fare\']) 3 data[is.na(data$Fare),\'Fare\'] <-7.25
-
补Cabin(设为默认值)
因为除去这些缺失值后,测得IV已较高,所以可直接设为一个默认值
1 summary(data$Cabin) 2 head(data$Cabin) 3 data$Cabin <- as.factor(sapply(data$Cabin,FUN = function(x) ifelse(x==\'\',\'X\',str_sub(x,1,1))))
-
训练模型
1 set.seed(123) 2 class(data$Embarked) 3 data$Sex <- as.factor(data$Sex) 4 model <- cforest(Survived~Pclass+Title+Sex+Age+SibSp+Parch+TicketCount+Fare+Cabin+Embarked,data,controls = cforest_unbiased(ntree=2000,mtry=3)
-
交叉验证
1 cv.summarize <- function(data.true, data.predict) { 2 print(paste(\'Recall:\', Recall(data.true, data.predict))) 3 print(paste(\'Precision:\', Precision(data.true, data.predict))) 4 print(paste(\'Accuracy:\', Accuracy(data.predict, data.true))) 5 print(paste(\'AUC:\', AUC(data.predict, data.true)))
-
预测
1 predict.result <-predict(model,data[(1+nrow(train)):(nrow(data)),],OOB=TRUE,type=\'response\') 2 output <- data.frame(PassengerID=test$PassengerId,Survived=predict.result) 3 write.csv(output,file =\'F:/R/泰坦尼克幸存分析/cit1.csv\',row.names = FALSE)
以上是关于Titanic幸存预测分析(Kaggle)的主要内容,如果未能解决你的问题,请参考以下文章