matlab下kmeans及pam算法对球型数据分类练习
Posted 风靡oopp
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了matlab下kmeans及pam算法对球型数据分类练习相关的知识,希望对你有一定的参考价值。
clear all; clc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %数据初始化 Data=zeros(3,20000); %加噪声 for i=1:4000 Data(1,i)=200; Data(2,i)=200; Data(3,i)=200; end for i=4001:12000 p=unifrnd(0,50); a=unifrnd(0,2*pi); b=unifrnd(0,pi); Data(1,i)=p*sin(a)*cos(b); Data(2,i)=p*sin(a)*sin(b); Data(3,i)=p*cos(a); end for i=12001:20000 p=unifrnd(50,100); a=unifrnd(0,2*pi); b=unifrnd(0,pi); Data(1,i)=p*sin(a)*cos(b); Data(2,i)=p*sin(a)*sin(b); Data(3,i)=p*cos(a); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %样本数量 [d,N]=size(Data); %聚类的数目 K=2; %方法选择 method=‘kmeans‘; %method=‘kmedoids‘; %选取初始点 %max_Initial=max(20,N/(5*K)); max_Initial=20; label=zeros(max_Initial,N); center=zeros(d,K,max_Initial); C=zeros(1,N); %主循环 for initial_Case=1:max_Initial pointK=Initial_center(Data,K); iter=0; max_iter=1e+3; % xK = pointK; disp([‘------------KM进行第 ‘ num2str(initial_Case) ‘ 次重新选择初始中心-----------‘]) %%每次初始化K个中心点后,进行的循环 while iter < max_iter iter = iter+1; if mod(iter,50)==0 disp([‘ 内部循环进行第 ‘ num2str(iter) ‘ 次迭代‘]) end %%%根据数据矩阵P中每个点到中心点的距离(最小)确定所属分类 for i=1:N dert = repmat(Data(:,i),1,K)-pointK; distK=sqrt(diag(dert‘*dert)); [~,j] = min(distK); C(i) = j; end %%%重新计算K个中心点 xK_=zeros(d,K); for i=1:K Pi=Data(:,find(C==i)); Nk = size(Pi,2); % K-Means K-Medoids唯一不同的地方:选择中心点的方式 switch lower(method) case ‘kmeans‘ xK_(:,i) = sum(Pi,2)/Nk; case ‘kmedoids‘ Dx2 = zeros(1,Nk); for t=1:Nk dx=Pi-Pi(:,t)*ones(1,Nk); Dx2(t)=sum(sqrt(sum(dx.*dx,1)),2); end [~,min_ind] = min(Dx2); xK_(:,i) = Pi(:,min_ind); otherwise errordlg(‘请输入正确的方法:kmeans-OR-kmedoids‘,‘MATLAB error‘); end end %判断是否达到结束条件 if xK_==pointK % & iter>50 disp([‘###迭代 ‘ num2str(iter) ‘ 次得到收敛的解‘]) label(initial_Case,:) = C; center(:,:,initial_Case) = xK_; % plot_Graph(C); break; end pointK=xK_; %xK = xK_; end if iter == max_iter disp(‘###达到内部最大迭代次数1000,未得到收敛的解‘); label(initial_Case,:) = C; center(:,:,initial_Case) = xK_; %plot_Graph(C); %break end end %%%%增加对聚类结果最优性的比较 %距离差 dist_N = zeros(max_Initial,K); for initial_Case=1:max_Initial for k=1:K tem=find(label(initial_Case,:)==k); dx=Data(:,tem)-center(:,k,initial_Case)*ones(1,size(tem,2)); dxk=sqrt(sum(dx.*dx,1)); dist_N(initial_Case,k)=sum(dxk); %dist_N(initial_Case,k)=dxk; end end %%%%对于max_Initial次初始化中心点得到的分类错误 %%%%取错误最小的情况的Label作为最终分类 %求K类总的误差 dist_N_sum=sum(dist_N,2); [distmin,best_ind]=min(dist_N_sum); %最佳分组 best_Label=label(best_ind,:); %最佳中心 best_Center=center(:,:,best_ind); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %三维散布图 figure(); scatter3(Data(1,:),Data(2,:),Data(3,:),‘filled‘,‘cdata‘,best_Label); title(‘Data Distribution‘);
以上是关于matlab下kmeans及pam算法对球型数据分类练习的主要内容,如果未能解决你的问题,请参考以下文章
图像分割基于matlab麻雀算法优化Kmeans图像分割含Matlab源码 2030期