matlab kmeans函数

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了matlab kmeans函数相关的知识,希望对你有一定的参考价值。

我想问下,如果我的数据m*n矩阵,用了kmeans后返回n*1矩阵,它如何表示每个点属于哪个聚类?要表示每个点属于的聚类,不应该也返回m*n矩阵吗?还有我想对彩色图像分割,求教用kmeans函数如何做?

参考技术A kmeans按行分类,如果数据矩阵为m*n的话,分类结果第一个表示为m*1,是为各点属于哪类样本的标注,至于彩色图像分割,你可以先读入图片,提取其中的句柄,读入数据为N*N的数据集,然后做分类。 参考技术B k-均值聚类?追问

追答

不懂,应该有很多这样的资料,多看看吧,我有模糊聚类,但不能明确指出分到哪一类

追问

恩,我们是要做图像分割,本来想用k均值的,但是不会用,就用了边缘加区域生长做出来了

本回答被提问者采纳

MATLAB | kmeans聚类如何绘制更强的聚类边界(决策边界)

本篇文章主要解决对于kmeans聚类结果,怎样绘制更强的聚类边界:

不过在此之前先讲解如何绘制聚类效果、聚类边界,最后再展示上图所示更强的聚类边界。代码其实不需要写下面那么长,但是为了画图好看就写长点叭:


kmeans聚类结果

kmeans原理太简单就不细致的讲解了,而且matlab自带了kmeans函数,直接用就完事了,以下随机生成一组数据并聚类并绘图:

% kmeans demo
% rng(1)
PntSet1=mvnrnd([2 3],[1 0;0 2],500);
PntSet2=mvnrnd([6 7],[1 0;0 2],500);
PntSet3=mvnrnd([6 2],[1 0;0 1],500); 
X=[PntSet1;PntSet2;PntSet3];

% kmeans聚类
K=3;
[idx,C]=kmeans(X,K);
% 配色
colorList=[0.4  0.76 0.65
           0.99 0.55 0.38 
           0.55 0.63 0.80
           0.23 0.49 0.71
           0.94 0.65 0.12
           0.70 0.26 0.42
           0.86 0.82 0.11];
% 绘制散点图 ===============================================================
figure()
hold on
strSetK='';
for i=1:K
    scatter(X(idx==i,1),X(idx==i,2),80,'filled',...
        'LineWidth',1,'MarkerEdgeColor',[1 1 1]*.3,'MarkerFaceColor',colorList(i,:));
    strSeti=['pointSet',num2str(i)];
end
legend(gca,strSet:)
% 坐标区域修饰
ax=gca; 
ax.LineWidth=1.4;
ax.Box='on';
ax.TickDir='in';
ax.XMinorTick='on';
ax.YMinorTick='on';
ax.XGrid='on';
ax.YGrid='on';
ax.GridLineStyle='--';
ax.XColor=[.3,.3,.3];
ax.YColor=[.3,.3,.3];
ax.FontWeight='bold';
ax.FontName='Cambria';
ax.FontSize=11;


kmeans聚类边界

我们任取一个点,当然是离哪个聚类中心近那就属于哪个聚类区域,这样我们就可以在平面上取非常多的点来描述聚类区域与边界。

公式描述来看,分类数为 K K K k = 1 , 2 , … , K k=1,2,\\dots,K k=1,2,,K,聚类中心坐标写作 C k C_k Ck,对于任意一点 P P P,若:

k ∗ = arg ⁡ min ⁡ k ∥ P − C k ∥ k^*=\\undersetk\\arg \\min \\left \\| P-C_k\\right \\| k=kargminPCk
则该点属于第 k ∗ k^* k类。

% kmeans Region demo
% rng(1) 
PntSet1=mvnrnd([2 3],[1 0;0 2],500);
PntSet2=mvnrnd([6 7],[1 0;0 2],500);
PntSet3=mvnrnd([6 2],[1 0;0 1],500); 
X=[PntSet1;PntSet2;PntSet3];

% kmeans聚类
K=3;
[idx,C]=kmeans(X,K);
% 配色
colorList=[0.4  0.76 0.65
           0.99 0.55 0.38 
           0.55 0.63 0.80
           0.23 0.49 0.71
           0.94 0.65 0.12
           0.70 0.26 0.42
           0.86 0.82 0.11];
% 绘制聚类区域及边界 ========================================================
figure()
hold on
x1=min(X(:,1)):0.01:max(X(:,1));
x2=min(X(:,2)):0.01:max(X(:,2));
[x1G,x2G]=meshgrid(x1,x2);
XGrid=[x1G(:),x2G(:)];

% 检测每个格点属于哪一类
XV=zeros(size(XGrid,1),K);
for i=1:K
    XV(:,i)=sqrt(sum((XGrid-C(i,:)).^2,2));
end 
[~,idx2Region]=min(XV,[],2);

% 绘制聚类区域方法一
% gscatter(XGrid(:,1),XGrid(:,2),idx2Region,colorList,'..');

% 绘制聚类区域方法二
RGrid=zeros(size(x1G(:)));
GGrid=zeros(size(x1G(:)));
BGrid=zeros(size(x1G(:)));
for i=1:K
    RGrid(idx2Region==i)=colorList(i,1);
    GGrid(idx2Region==i)=colorList(i,2);
    BGrid(idx2Region==i)=colorList(i,3);
end
CGrid=[];
CGrid(:,:,1)=reshape(RGrid,size(x1G));
CGrid(:,:,2)=reshape(GGrid,size(x1G));
CGrid(:,:,3)=reshape(BGrid,size(x1G));
surf(x1G,x2G,zeros(size(x1G)),'CData',CGrid,'EdgeColor','none','FaceAlpha',.5)

% 绘制边缘线
contour(x1G,x2G,reshape(idx2Region,size(x1G)),1.5:1:K,...
    'LineWidth',1.5,'LineColor',[0,0,0],'LineStyle','--')

scatterSet=[];
strSetK='';
for i=1:K
    scatterSet(i)=scatter(C(i,1),C(i,2),80,'filled','o','MarkerFaceColor',...
        colorList(i,:),'MarkerEdgeColor',[0,0,0],'LineWidth',1,'LineWidth',1.9);
    strSeti=['Cluster center ',num2str(i)];
end
% 添加图例
legend(scatterSet,strSet:)
% 坐标区域修饰
ax=gca;
ax.LineWidth=1.4;
ax.Box='on';
ax.TickDir='in';
ax.XMinorTick='on';
ax.YMinorTick='on';
ax.XGrid='on';
ax.YGrid='on';
ax.GridLineStyle='--';
ax.XColor=[.3,.3,.3];
ax.YColor=[.3,.3,.3];
ax.FontWeight='bold';
ax.FontName='Cambria';
ax.FontSize=11;


更复杂的边界

这里只是举个例子哈,大家当然可以整出更复杂的边界,首先假设:
k ∗ = arg ⁡ min ⁡ k ∥ P − C k ∥ 4 k^*=\\undersetk\\arg \\min \\left \\| P-C_k\\right \\| ^4 k=kargminPCk4

这是我在某篇论文中看到的边界条件,不过四次方在 [ 0 , + ∞ ) \\left [ 0,+\\infty \\right ) [0,+) 上面单调,光改这一点并不会对图像产生任何影响,因此该条件的描述不止于,对于上面得到的 k ∗ k^* k,若:

∥ P − C k ∗ ∥ 4 + γ < ∥ P − C k ∥ 4 , k ≠ k ∗ \\left \\| P-C_k^*\\right \\| ^4+\\gamma< \\left \\| P-C_k\\right \\| ^4\\\\ ,k\\neq k^* PCk4+γ<PCk4,k=k
则该 P P P点属于第 k ∗ k^* k类,否则就哪个类也不属于(或者说噪声类?),其实思想也很简单,就是我仅仅数值小不顶用,我还要小到一定程度才行。我加上一个数值还是更趋向于这个类,那就属于这个类没跑了。

% kmeans Region demo
rng(1)
PntSet1=mvnrnd([2 3],[1 0;0 2],500);
PntSet2=mvnrnd基于MATLAB的Kmeans聚类算法的仿真与分析

聚类算法及Matlab实现

怎样用matlab实现多维K-means聚类算法

MATLAB | kmeans聚类如何绘制更强的聚类边界(决策边界)

MATLAB | kmeans聚类如何绘制更强的聚类边界(决策边界)

图像分割基于matlab Kmean聚类分水岭oust粒子群算法优化脂肪肝图像分割含Matlab源码 2277期