7-18 二分法求多项式单根(20 分)

Posted challengor

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了7-18 二分法求多项式单根(20 分)相关的知识,希望对你有一定的参考价值。

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0

二分法的步骤为:

  • 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
  • 如果f(a)f(b)<0,则计算中点的值f((a+b)/2)
  • 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
  • 如果f((a+b)/2)f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
  • 如果f((a+b)/2)f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。

本题目要求编写程序,计算给定3阶多项式f(x)=a?3??x?3??+a?2??x?2??+a?1??x+a?0??在给定区间[a,b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数a?3??a?2??a?1??a?0??,在第2行中顺序给出区间端点ab。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33
#include <stdio.h>  
float f(float x);  
float a3, a2, a1, a0;  
  
int main()  
{  
    float a, b;  
    scanf("%f %f %f %f", &a3, &a2, &a1, &a0);  
    scanf("%f %f", &a, &b);  
    float left, mid, right;  
    left = a;  
    right = b;  
    while (left <= right - 0.001 && f(left) * f(right) <= 0)  
    {  
        if (f(left) == 0)  
        {  
            printf("%.2f",&left);  
            return 0;  
        }  
        if (f(right) == 0)  
        {  
            printf("%.2f", right);  
            return 0;  
        }  
        mid = (left + right) / 2;  
        if (f(mid) * f(left) > 0)  
        {  
            left = mid;  
        }  
        else  
        {  
            right = mid;  
        }  
    }  
    printf("%.2f", mid);  
    return 0;  
}  
  
float f(float x)  
{  
    float result;  
    result = a3*x*x*x + a2*x*x + a1*x + a0;  
    return result;  
}  

 

以上是关于7-18 二分法求多项式单根(20 分)的主要内容,如果未能解决你的问题,请参考以下文章

[PTA]7-18 二分法求多项式单根

PAT-二分法求多项式单根

03-树1. 二分法求多项式单根

03-树1. 二分法求多项式单根

数据结构(陈越) 作业题 第三周

7-22 一元多项式的乘法与加法运算 (20 分)