洛谷 [P2701] 巨大的牛棚

Posted Mr_Wolfram的高维空间

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了洛谷 [P2701] 巨大的牛棚相关的知识,希望对你有一定的参考价值。

首先,本题是一道最大子矩阵问题,且m,n较小,可以使用DP做,
与 洛谷 [P1387]最大正方形 做法相同。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAXN=5005;
int init(){
    int rv=0,fh=1;
    char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-') fh=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9'){
        rv=(rv<<1)+(rv<<3)+c-'0';
        c=getchar();
    }
    return fh*rv;
}
bool ff[MAXN][MAXN];
int dp[MAXN][MAXN],n,t,ans;
int main(){
    freopen("in.txt","r",stdin);
    n=init();t=init();
    for(int i=1;i<=t;i++){
        int x=init(),y=init();
        ff[y][x]=1;
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(ff[i][j]) dp[i][j]=0;
            else{
                dp[i][j]=min(dp[i-1][j],min(dp[i-1][j-1],dp[i][j-1]))+1;
                ans=max(dp[i][j],ans);
            }
        }
    }
    cout<<ans;
    fclose(stdin);
    return 0;
}

本题也可以使用悬线法求最大子矩阵,首先 O(n^2) 预处理,对于矩阵上的每一个点,我们可以:

1.从它向上引一条悬线,遇到边界或障碍点停止,h[i][j] 数组记录从点 (i,j) 向上的悬线长度。

2.向左延伸,遇到边界或障碍点停止,l[i][j] 数组记录从点 (i,j) 向左最大能延伸的长度。

3.向右延伸,遇到边界或障碍点停止,r[i][j] 数组记录从点 (i,j) 向右最大能延伸的长度。

但是这样是不够的, 因为,L[i][j] 和 L[i][j] 的值都各自取决于 L[i-1][j] 和 R[i-1][j]。(因为为保证成为一个矩形,L[i][j] 不能超过 L[i-1][j],R同理)

所以枚举点对 l 和 r 进行更新,对 L[i-1][j] 与 l[i][j] 取 min,r 同理。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAXN=1005;
int init(){
    int rv=0,fh=1;
    char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-') fh=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9'){
        rv=(rv<<1)+(rv<<3)+c-'0';
        c=getchar();
    }
    return fh*rv;
}
int n,t,l[MAXN][MAXN],r[MAXN][MAXN],L[MAXN][MAXN],R[MAXN][MAXN],H[MAXN][MAXN],ans;
bool ff[MAXN][MAXN];
int main(){
    freopen("in.txt","r",stdin);
    n=init();t=init();
    for(int i=1;i<=t;i++){
        int x=init(),y=init();
        ff[x][y]=1;
    }
    for(int i=1;i<=n;i++){
        l[i][1]=0;
        for(int j=2;j<=n;j++){
            if(ff[i][j]){
                l[i][j]=j;
            }else l[i][j]=l[i][j-1];
        }
        r[i][n]=n+1;
        for(int j=n-1;j>=1;j--){
            if(ff[i][j]){
                r[i][j]=j;
            }else r[i][j]=r[i][j+1];
        }
    }
    for(int j=1;j<=n;j++){
        H[1][j]=1;L[1][j]=l[1][j];R[1][j]=r[1][j];
    }
    for(int i=2;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(ff[i-1][j]){
                H[i][j]=1;
                L[i][j]=l[i][j],R[i][j]=r[i][j];
            }else{
                H[i][j]=H[i-1][j]+1;
                L[i][j]=max(L[i-1][j],l[i][j]);
                R[i][j]=min(R[i-1][j],r[i][j]);
            }
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            int len=min(H[i][j],R[i][j]-L[i][j]-1);
            //if(len==6) printf("%d %d\n",i,j);
            ans=max(ans,len);
        }
    }
    cout<<ans;
    fclose(stdin);
    return 0;
}

以上是关于洛谷 [P2701] 巨大的牛棚的主要内容,如果未能解决你的问题,请参考以下文章

洛谷——P2701 [USACO5.3]巨大的牛棚Big Barn

洛谷—— P2701 [USACO5.3]巨大的牛棚Big Barn

洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

题解 P2701 [USACO5.3]巨大的牛棚Big Barn

P2701 [USACO5.3]巨大的牛棚Big Barn |动态规划

[DP专题]悬线法