三维凸包模版 求三维凸包的表面积和体积

Posted lcchuguo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了三维凸包模版 求三维凸包的表面积和体积相关的知识,希望对你有一定的参考价值。

#include <stdio.h>  
#include <string.h>  
#include <stdlib.h>  
#include <math.h>  
#include <iostream>  
#include <queue>  
#include <algorithm>  
using namespace std;  
#define PR 1e-8  
#define N 510  
struct TPoint{  
    double x, y, z;  
    TPoint(){}  
    TPoint(double _x, double _y, double _z):x(_x), y(_y), z(_z){}  
    TPoint operator-(const TPoint p){return TPoint(x-p.x, y-p.y, z-p.z);}  
    TPoint operator*(const TPoint p){return TPoint(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x);}  
    double operator^(const TPoint p){return x*p.x+y*p.y+z*p.z;}  
};  
struct fac{  
    int a, b, c;  
    bool ok;  
};  
struct T3dhull{  
    int n;  
    TPoint ply[N];  
    int trianglecnt;  
    fac tri[N];  
    int vis[N][N];  
    double dist(TPoint a){return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);}  
    double area(TPoint a, TPoint b, TPoint c)  
    { return dist((b-a)*(c-a));}  
    double volume(TPoint a, TPoint b, TPoint c, TPoint d)  
    { return (b-a)*(c-a)^(d-a);}  
    double ptoplane(TPoint &p, fac &f)  
    {  
        TPoint m = ply[f.b] - ply[f.a], n = ply[f.c]-ply[f.a], t = p-ply[f.a];  
        return (m*n)^t;  
    }  
    void deal(int p, int a, int b){  
        int f = vis[a][b];  
        fac add;  
        if(tri[f].ok)  
        {  
            if((ptoplane(ply[p], tri[f])) > PR)  
                dfs(p, f);  
            else   
            {  
                add.a = b, add.b = a, add.c = p, add.ok = 1;  
                vis[p][b] = vis[a][p] = vis[b][a] = trianglecnt;  
                tri[trianglecnt++] = add;  
            }  
        }  
    }  
    void dfs(int p, int cnt) {  
        tri[cnt].ok = 0;  
        deal(p, tri[cnt].b, tri[cnt].a);  
        deal(p, tri[cnt].c, tri[cnt].b);  
        deal(p, tri[cnt].a, tri[cnt].c);  
    }  
    bool same(int s, int e) {  
        TPoint a = ply[tri[s].a], b = ply[tri[s].b], c = ply[tri[s].c];  
        return fabs(volume(a,b,c,ply[tri[e].a])) < PR  
            && fabs(volume(a,b,c,ply[tri[e].b])) < PR  
            && fabs(volume(a,b,c,ply[tri[e].c])) < PR;  
    }  
    void construct()  
    {  
        int i, j;  
        trianglecnt = 0;  
        if(n<4) return ;  
        bool tmp = true;  
        for(i = 1; i < n; i++)  
        {  
            if((dist(ply[0]-ply[i])) > PR)  
            {  
                swap(ply[1], ply[i]);  
                tmp = false;  
                break;  
            }  
        }  
        if(tmp)return ;  
        tmp = true;  
        for(i = 2; i < n; i++)  
        {  
            if((dist((ply[0]-ply[1])*(ply[1]-ply[i]))) > PR)  
            {  
                swap(ply[2], ply[i]);  
                tmp = false;  
                break;  
            }  
        }  
        if(tmp) return ;  
        tmp = true;  
        for(i = 3; i < n; i++)  
        {  
            if(fabs((ply[0]-ply[1])*(ply[1]-ply[2])^(ply[0]-ply[i]))>PR)  
            {  
                swap(ply[3], ply[i]);  
                tmp =false;  
                break;  
            }  
        }  
        if(tmp)return ;  
        fac add;  
        for(i = 0; i < 4; i++)  
        {  
            add.a = (i+1)%4, add.b = (i+2)%4, add.c = (i+3)%4, add.ok = 1;  
            if((ptoplane(ply[i], add))>0)  
                swap(add.b, add.c);  
            vis[add.a][add.b] = vis[add.b][add.c] = vis[add.c][add.a] = trianglecnt;  
            tri[trianglecnt++] = add;  
        }  
        for(i = 4; i < n; i++)  
        {  
            for(j = 0; j < trianglecnt; j++)  
            {  
                if(tri[j].ok && (ptoplane(ply[i], tri[j])) > PR)  
                {  
                    dfs(i, j); break;  
                }  
            }  
        }  
        int cnt = trianglecnt;  
        trianglecnt = 0;  
        for(i = 0; i < cnt; i++)  
        {  
            if(tri[i].ok)  
                tri[trianglecnt++] = tri[i];  
        }  
    }  
    double area()  
    {  
        double ret = 0;  
        for(int i = 0; i < trianglecnt; i++)  
            ret += area(ply[tri[i].a], ply[tri[i].b], ply[tri[i].c]);  
        return ret/2.0;  
    }  
    double volume()  
    {  
        TPoint p(0,0,0);  
        double ret = 0;  
        for(int i = 0; i < trianglecnt; i++)  
            ret += volume(p, ply[tri[i].a], ply[tri[i].b], ply[tri[i].c]);  
        return fabs(ret/6);  
    }  
}hull;  
  
int main(){  
    int Cas = 1;  
    while(scanf("%d",&hull.n), hull.n){  
        int i ;  
        for(i = 0; i < hull.n; i++)  
            scanf("%lf %lf %lf",&hull.ply[i].x, &hull.ply[i].y, &hull.ply[i].z);  
        hull.construct();  
        printf("Case %d: %.2lf\n", Cas++, hull.area());  
    }  
    return 0;  
}  

以上是关于三维凸包模版 求三维凸包的表面积和体积的主要内容,如果未能解决你的问题,请参考以下文章

POJ3528 HDU3662 三维凸包模板

P4724 模板三维凸包(简洁)

Luogu 4724 三维凸包

三维凸包模板

hdu4266(三维凸包模板题)

[Luogu4724][模板]三维凸包(增量构造法)