机器学习基石:07 The VC Dimension
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习基石:07 The VC Dimension相关的知识,希望对你有一定的参考价值。
当N大于等于2,k大于等于3时,
易得:mH(N)被Nk-1给bound住。
![技术分享](https://image.cha138.com/20210822/97fa845c421442fca8f42404a63e0629.jpg)
![技术分享](https://image.cha138.com/20210822/3df8e623d1ba4f72903503ba7b92cd90.jpg)
![技术分享](https://image.cha138.com/20210822/94474835e111418a853c3d5b9103cd85.jpg)
VC维:最小断点值-1/H能shatter的最大k值。
这里的k指的是存在k个输入能被H给shatter,不是任意k个输入都能被H给shatter。
如:2维感知机能shatter平面上呈三角形排列的3个样本点,却shatter不了平面上呈直线排列的3个样本点,
因为当另外2个点标签值一致时,中间那个点无法取与它们相反的标签值。
若无断点,则该H下,VC维为无穷。
所以,存在断点--->有限VC维。
![技术分享](https://image.cha138.com/20210822/7994789d25c14c388e67d0c0cdba3a0f.jpg)
![技术分享](https://image.cha138.com/20210822/dd415b2aa2534248828dd29bdbcad103.jpg)
d维感知器算法下,VC维=d+1。
![技术分享](https://image.cha138.com/20210822/20b15ecdf32045c8961e6d74f99ee42d.jpg)
证明:
D,大小为d+1--->矩阵X,易得X是(d+1)*(d+1)的矩阵,X的秩小于等于d+1,
所以存在X,行向量之间线性无关,每一行向量可取任意标签值,
所以H能shatter这个X对应的d+1个样本点,即VC维>=d+1;
D,大小为d+2--->矩阵X,易得X是(d+2)*(d+1)的矩阵,X的秩小于d+2,
所以任意X,总有一行与其他行向量线性相关,该行的标签值收到限制,
所以H不能shatter这个X对应的d+2个样本点,即VC维<=d+1;
所以,VC维=d+1。
![技术分享](https://image.cha138.com/20210822/74177e2b39e44da2bf6681e3d56402c8.jpg)
![技术分享](https://image.cha138.com/20210822/da28a78247e049b483f1ffba402e4204.jpg)
VC维,反映的是H的自由度,可粗略认为是自由参数的个数(不总是)。
![技术分享](https://image.cha138.com/20210822/bf3d97a9b6fb456c8e4f0daf96eee151.jpg)
![技术分享](https://image.cha138.com/20210822/180453a384704127833892911c13db94.jpg)
VC维增大,Ein减小,模型复杂度增大;
VC维减小,Ein增大,模型复杂度减小。
![技术分享](https://image.cha138.com/20210822/ff37ffd280e3461690634c39a47274c2.jpg)
![技术分享](https://image.cha138.com/20210822/89bb706940164b2f884fe7ea4a7ef696.jpg)
![技术分享](https://image.cha138.com/20210822/480ecaa9f2de40e5ae9ff751aaed3c39.jpg)
![技术分享](https://image.cha138.com/20210822/a0a075c4058647219d1cba1481228c8d.jpg)
给定差异容忍度epsilon,概率容忍度delta,VC维,求满足条件需要多少样本。
理论上,N约等于10000倍的VC维,
实际上,N取10倍的VC维就足够了。
![技术分享](https://image.cha138.com/20210822/69021cb0854940faab8b258fc865b28f.jpg)
可见,VC维是十分松弛的,
1.使用霍夫丁不等式,不管f、输入分布P;
2.使用成长函数,不管具体的D;
3.使用N的多项式,不管H(VC维相同);
4.使用联合bound,不管A。
之所以使用VC维是为了定性分析VC维里包含的信息,
而且它对所有模型都近似松弛。
![技术分享](https://image.cha138.com/20210822/fccf4ed8188e4c4f9793d49dca585166.jpg)
以上是关于机器学习基石:07 The VC Dimension的主要内容,如果未能解决你的问题,请参考以下文章
机器学习基石笔记-Lecture 5-7 VC dimension
机器学习基石第一讲:the learning problem
机器学习基石笔记-chapter 1 The learning problem