[BZOJ2733] [HNOI2012]永无乡(并查集 + 线段树合并)
Posted 蒟蒻zht的博客
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[BZOJ2733] [HNOI2012]永无乡(并查集 + 线段树合并)相关的知识,希望对你有一定的参考价值。
一看到第k大就肯定要想到什么权值线段树,主席树,平衡树之类的
然后就简单了
用并查集判断连通,每个节点建立一颗权值线段树,连通的时候直接合并即可
查询时再二分递归地查找
时间复杂度好像不是很稳定。。。但hzwer都用这种方法水过。。
正解好像是平衡树+启发式合并,以后学TT
#include <cstdio> #include <iostream> #define N 100001 int n, m, q, cnt; int a[N], f[N], sum[N * 20], ls[N * 20], rs[N * 20], root[N], id[N]; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == ‘-‘) f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - ‘0‘; return x * f; } inline void insert(int &now, int l, int r, int x) { now = ++cnt; if(l == r) { sum[now] = 1; return; } int mid = (l + r) >> 1; if(x <= mid) insert(ls[now], l, mid, x); else insert(rs[now], mid + 1, r, x); sum[now] = sum[ls[now]] + sum[rs[now]]; } inline void merge(int &x, int y) { if(!x || !y) { x += y; return; } sum[x] += sum[y]; merge(ls[x], ls[y]); merge(rs[x], rs[y]); } inline int query(int now, int l, int r, int x) { if(l == r) return l; int mid = (l + r) >> 1; if(sum[ls[now]] >= x) return query(ls[now], l, mid, x); else return query(rs[now], mid + 1, r, x - sum[ls[now]]); } inline int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); } int main() { int i, x, y; char s[1]; n = read(); m = read(); for(i = 1; i <= n; i++) { f[i] = i; x = read(); id[x] = i; insert(root[i], 1, n, x); } for(i = 1; i <= m; i++) { x = find(read()); y = find(read()); if(x ^ y) { f[y] = x; merge(root[x], root[y]); } } q = read(); while(q--) { scanf("%s", s); x = read(); y = read(); if(s[0] == ‘B‘) { x = find(x); y = find(y); if(x ^ y) { f[y] = x; merge(root[x], root[y]); } } else { x = find(x); if(y > sum[root[x]]) puts("-1"); else printf("%d\n", id[query(root[x], 1, n, y)]); } } return 0; }
以上是关于[BZOJ2733] [HNOI2012]永无乡(并查集 + 线段树合并)的主要内容,如果未能解决你的问题,请参考以下文章
[BZOJ] 2733: [HNOI2012]永无乡 #线段树合并+并查集