KNN和K-Means的区别

Posted zourui4271

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了KNN和K-Means的区别相关的知识,希望对你有一定的参考价值。

KNN和K-Means的区别

 

KNN

K-Means

1.KNN是分类算法 

 

2.监督学习 

3.喂给它的数据集是带label的数据,已经是完全正确的数据

1.K-Means是聚类算法 

 

2.非监督学习 

3.喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序

没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程
K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label设为c K的含义:K是人工固定好的数字,假设数据集合可以分为K个簇,由于是依靠人工定好,需要一点先验知识
   
相似点:都包含这样的过程,给定一个点,在数据集中找离它最近的点。即二者都用到了NN(Nears Neighbor)算法,一般用KD树来实现NN。

以上是关于KNN和K-Means的区别的主要内容,如果未能解决你的问题,请参考以下文章

概率 kNN 和朴素贝叶斯之间的区别

KNN 和K-means

机器学习算法 之 KNN和K-Means

SOM(自组织地图)和 K-Means 有啥区别?

Mini Batch K-Means 和 Sequential/online K-Means 的区别

聚类算法,k-means,高斯混合模型(GMM)