LDA
Posted 懵懂的菜鸟
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LDA相关的知识,希望对你有一定的参考价值。
版权声明:本文为博主原创文章,转载请注明CSDN博客源地址!共同学习,一起进步~
以前只知道LDA是个好东西,但自己并没有真正去使用过。同时,关于它的文章也非常之多,推荐大家阅读书籍《LDA漫游指南》,最近自己在学习文档主题分布和实体对齐中也尝试使用LDA进行简单的实验。这篇文章主要是讲述Python下LDA的基础用法,希望对大家有所帮助。如果文章中有错误或不足之处,还请海涵~
一. 下载安装
LDA推荐下载地址包括:其中前三个比较常用。
gensim下载地址:https://radimrehurek.com/gensim/models/ldamodel.html
pip install lda安装地址:https://github.com/ariddell/lda
scikit-learn官网文档:LatentDirichletAllocation
其中sklearn的代码例子可参考下面这篇:
Topic extraction with NMF and Latent Dirichlet Allocation
其部分输出如下所示,包括各个主体Topic包含的主题词:
- Loading dataset...
- Fitting LDA models with tf features, n_samples=2000 and n_features=1000...
- done in 0.733s.
- Topics in LDA model:
- Topic #0:
- 000 war list people sure civil lot wonder say religion america accepted punishment bobby add liberty person kill concept wrong
- Topic #1:
- just reliable gods consider required didn war makes little seen faith default various civil motto sense currency knowledge belief god
- Topic #2:
- god omnipotence power mean rules omnipotent deletion policy non nature suppose definition given able goal nation add place powerful leaders
- ....
下面这三个也不错,大家有时间的可以见到看看:
https://github.com/arongdari/python-topic-model
https://github.com/shuyo/iir/tree/master/lda
https://github.com/a55509432/python-LDA
其中第三个作者a55509432的我也尝试用过,模型输出文件为:
model_parameter.dat 保存模型训练时选择的参数
wordidmap.dat 保存词与id的对应关系,主要用作topN时查询
model_twords.dat 输出每个类高频词topN个
model_tassgin.dat 输出文章中每个词分派的结果,文本格式为词id:类id
model_theta.dat 输出文章与类的分布概率,文本一行表示一篇文章,概率1 概率2..表示文章属于类的概率
model_phi.dat 输出词与类的分布概率,是一个K*M的矩阵,K为设置分类的个数,M为所有文章的词的总数
但是短文本信息还行,但使用大量文本内容时,输出文章与类分布概率几乎每行数据存在大量相同的,可能代码还存在BUG。下面是介绍使用pip install lda安装过程及代码应用:
- pip install lda
参考:[python] 安装numpy+scipy+matlotlib+scikit-learn及问题解决
二. 官方文档
这部分内容主要参考下面几个链接,强推大家去阅读与学习:
官网文档:https://github.com/ariddell/lda
lda: Topic modeling with latent Dirichlet Allocation
Getting started with Latent Dirichlet Allocation in Python - sandbox
[翻译] 在Python中使用LDA处理文本 - letiantian
文本分析之TFIDF/LDA/Word2vec实践 - vs412237401
1.载入数据
- import numpy as np
- import lda
- import lda.datasets
- # document-term matrix
- X = lda.datasets.load_reuters()
- print("type(X): {}".format(type(X)))
- print("shape: {}\n".format(X.shape))
- print(X[:5, :5])
- # the vocab
- vocab = lda.datasets.load_reuters_vocab()
- print("type(vocab): {}".format(type(vocab)))
- print("len(vocab): {}\n".format(len(vocab)))
- print(vocab[:5])
- # titles for each story
- titles = lda.datasets.load_reuters_titles()
- print("type(titles): {}".format(type(titles)))
- print("len(titles): {}\n".format(len(titles)))
- print(titles[:5])
X矩阵为395*4258,共395个文档,4258个单词,主要用于计算每行文档单词出现的次数(词频),然后输出X[5,5]矩阵;
vocab为具体的单词,共4258个,它对应X的一行数据,其中输出的前5个单词,X中第0列对应church,其值为词频;
titles为载入的文章标题,共395篇文章,同时输出0~4篇文章标题如下。
- type(X): <type ‘numpy.ndarray‘>
- shape: (395L, 4258L)
- [[ 1 0 1 0 0]
- [ 7 0 2 0 0]
- [ 0 0 0 1 10]
- [ 6 0 1 0 0]
- [ 0 0 0 2 14]]
- type(vocab): <type ‘tuple‘>
- len(vocab): 4258
- (‘church‘, ‘pope‘, ‘years‘, ‘people‘, ‘mother‘)
- type(titles): <type ‘tuple‘>
- len(titles): 395
- (‘0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20‘,
- ‘1 GERMANY: Historic Dresden church rising from WW2 ashes. DRESDEN, Germany 1996-08-21‘,
- "2 INDIA: Mother Teresa‘s condition said still unstable. CALCUTTA 1996-08-23",
- ‘3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25‘,
- ‘4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25‘)
下面是测试文档编号为0,单词编号为3117的数据,X[0,3117]:
- # X[0,3117] is the number of times that word 3117 occurs in document 0
- doc_id = 0
- word_id = 3117
- print("doc id: {} word id: {}".format(doc_id, word_id))
- print("-- count: {}".format(X[doc_id, word_id]))
- print("-- word : {}".format(vocab[word_id]))
- print("-- doc : {}".format(titles[doc_id]))
- ‘‘‘‘‘输出
- doc id: 0 word id: 3117
- -- count: 2
- -- word : heir-to-the-throne
- -- doc : 0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20
- ‘‘‘
2.训练模型
其中设置20个主题,500次迭代- model = lda.LDA(n_topics=20, n_iter=500, random_state=1)
- model.fit(X) # model.fit_transform(X) is also available
3.主题-单词(topic-word)分布
代码如下所示,计算‘church‘, ‘pope‘, ‘years‘这三个单词在各个主题(n_topocs=20,共20个主题)中的比重,同时输出前5个主题的比重和,其值均为1。- topic_word = model.topic_word_
- print("type(topic_word): {}".format(type(topic_word)))
- print("shape: {}".format(topic_word.shape))
- print(vocab[:3])
- print(topic_word[:, :3])
- for n in range(5):
- sum_pr = sum(topic_word[n,:])
- print("topic: {} sum: {}".format(n, sum_pr))
- type(topic_word): <type ‘numpy.ndarray‘>
- shape: (20L, 4258L)
- (‘church‘, ‘pope‘, ‘years‘)
- [[ 2.72436509e-06 2.72436509e-06 2.72708945e-03]
- [ 2.29518860e-02 1.08771556e-06 7.83263973e-03]
- [ 3.97404221e-03 4.96135108e-06 2.98177200e-03]
- [ 3.27374625e-03 2.72585033e-06 2.72585033e-06]
- [ 8.26262882e-03 8.56893407e-02 1.61980569e-06]
- [ 1.30107788e-02 2.95632328e-06 2.95632328e-06]
- [ 2.80145003e-06 2.80145003e-06 2.80145003e-06]
- [ 2.42858077e-02 4.66944966e-06 4.66944966e-06]
- [ 6.84655429e-03 1.90129250e-06 6.84655429e-03]
- [ 3.48361655e-06 3.48361655e-06 3.48361655e-06]
- [ 2.98781661e-03 3.31611166e-06 3.31611166e-06]
- [ 4.27062069e-06 4.27062069e-06 4.27062069e-06]
- [ 1.50994982e-02 1.64107142e-06 1.64107142e-06]
- [ 7.73480150e-07 7.73480150e-07 1.70946848e-02]
- [ 2.82280146e-06 2.82280146e-06 2.82280146e-06]
- [ 5.15309856e-06 5.15309856e-06 4.64294180e-03]
- [ 3.41695768e-06 3.41695768e-06 3.41695768e-06]
- [ 3.90980357e-02 1.70316633e-03 4.42279319e-03]
- [ 2.39373034e-06 2.39373034e-06 2.39373034e-06]
- [ 3.32493234e-06 3.32493234e-06 3.32493234e-06]]
- topic: 0 sum: 1.0
- topic: 1 sum: 1.0
- topic: 2 sum: 1.0
- topic: 3 sum: 1.0
- topic: 4 sum: 1.0
4.计算各主题Top-N个单词
下面这部分代码是计算每个主题中的前5个单词- n = 5
- for i, topic_dist in enumerate(topic_word):
- topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n+1):-1]
- print(‘*Topic {}\n- {}‘.format(i, ‘ ‘.join(topic_words)))
- *Topic 0
- - government british minister west group
- *Topic 1
- - church first during people political
- *Topic 2
- - elvis king wright fans presley
- *Topic 3
- - yeltsin russian russia president kremlin
- *Topic 4
- - pope vatican paul surgery pontiff
- *Topic 5
- - family police miami versace cunanan
- *Topic 6
- - south simpson born york white
- *Topic 7
- - order church mother successor since
- *Topic 8
- - charles prince diana royal queen
- *Topic 9
- - film france french against actor
- *Topic 10
- - germany german war nazi christian
- *Topic 11
- - east prize peace timor quebec
- *Topic 12
- - n‘t told life people church
- *Topic 13
- - years world time year last
- *Topic 14
- - mother teresa heart charity calcutta
- *Topic 15
- - city salonika exhibition buddhist byzantine
- *Topic 16
- - music first people tour including
- *Topic 17
- - church catholic bernardin cardinal bishop
- *Topic 18
- - harriman clinton u.s churchill paris
- *Topic 19
- - century art million museum city
5.文档-主题(Document-Topic)分布
计算输入前10篇文章最可能的Topic- doc_topic = model.doc_topic_
- print("type(doc_topic): {}".format(type(doc_topic)))
- print("shape: {}".format(doc_topic.shape))
- for n in range(10):
- topic_most_pr = doc_topic[n].argmax()
- print("doc: {} topic: {}".format(n, topic_most_pr))
- type(doc_topic): <type ‘numpy.ndarray‘>
- shape: (395L, 20L)
- doc: 0 topic: 8
- doc: 1 topic: 1
- doc: 2 topic: 14
- doc: 3 topic: 8
- doc: 4 topic: 14
- doc: 5 topic: 14
- doc: 6 topic: 14
- doc: 7 topic: 14
- doc: 8 topic: 14
- doc: 9 topic: 8
6.两种作图分析
详见英文原文,包括计算各个主题中单词权重分布的情况:- import matplotlib.pyplot as plt
- f, ax= plt.subplots(5, 1, figsize=(8, 6), sharex=True)
- for i, k in enumerate([0, 5, 9, 14, 19]):
- ax[i].stem(topic_word[k,:], linefmt=‘b-‘,
- markerfmt=‘bo‘, basefmt=‘w-‘)
- ax[i].set_xlim(-50,4350)
- ax[i].set_ylim(0, 0.08)
- ax[i].set_ylabel("Prob")
- ax[i].set_title("topic {}".format(k))
- ax[4].set_xlabel("word")
- plt.tight_layout()
- plt.show()
第二种作图是计算文档具体分布在那个主题,代码如下所示:
- import matplotlib.pyplot as plt
- f, ax= plt.subplots(5, 1, figsize=(8, 6), sharex=True)
- for i, k in enumerate([1, 3, 4, 8, 9]):
- ax[i].stem(doc_topic[k,:], linefmt=‘r-‘,
- markerfmt=‘ro‘, basefmt=‘w-‘)
- ax[i].set_xlim(-1, 21)
- ax[i].set_ylim(0, 1)
- ax[i].set_ylabel("Prob")
- ax[i].set_title("Document {}".format(k))
- ax[4].set_xlabel("Topic")
- plt.tight_layout()
- plt.show()
输出结果如下图:
三. 总结
这篇文章主要是对Python下LDA用法的入门介绍,下一篇文章将结合具体的txt文本内容进行分词处理、文档主题分布计算等。其中也会涉及python计算词频tf和tfidf的方法。
由于使用fit()总报错“TypeError: Cannot cast array data from dtype(‘float64‘) to dtype(‘int64‘) according to the rule ‘safe‘”,后使用sklearn中计算词频TF方法:
http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
总之,希望文章对你有所帮助吧!尤其是刚刚接触机器学习、Sklearn、LDA的同学,毕竟我自己其实也只是一个门外汉,没有系统的学习过机器学习相关的内容,所以也非常理解那种不知道如何使用一种算法的过程,毕竟自己就是嘛,而当你熟练使用后才会觉得它非常简单,所以入门也是这篇文章的宗旨吧!
最后非常感谢上面提到的文章链接作者,感谢他们的分享。如果有不足之处,还请海涵~
(By:Eastmount 2016-03-17 深夜3点半 http://blog.csdn.net/eastmount/ )
以上是关于LDA的主要内容,如果未能解决你的问题,请参考以下文章
我是这样一步步理解--主题模型(Topic Model)LDA(案例代码)