BZOJ1053 [HAOI2007]反素数ant 数论

Posted tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ1053 [HAOI2007]反素数ant 数论相关的知识,希望对你有一定的参考价值。

欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解


 

传送门 - BZOJ1053


题目描述

  对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。现在给定一个数N,你能求出不超过N的最大的反质数么?

(1<=N<=2,000,000,000)


题解

  对于任何一个数 $p$ ,令 $p=\\prod_\\limits{i\\in \\{prime\\} } i^{q_i}$ ,则总有 $ g(p)=\\prod_\\limits{i\\in \\{prime\\} } (q_i+1)$ 。

  命题1:如果 $p$ 是一个反素数,那么必然满足 $\\forall i,j\\in\\{prime\\} $ 如果 $i<j$ ,则 $q_i\\geq q_j$ 。

  我们可以简单的证明这一点。即:若 $q_i<q_j$ 则 $i^{q_i}j^{q_j}\\geq i^{q_j}j^{q_i}$ ,所以至少存在一个数 $q^\\prime$ ,在满足 $g(q)=g(q^\\prime)$ 的情况下,使得 $q^\\prime < q$ 。这与之前 “$q$ 是反素数” 的定义相悖,所以命题1 得证。

  但是,可以见得,上述命题虽然具有充分性,但是不具有必要性。

  譬如:

  $a=2^13^15^1$

  $b=2^35^1$

  它们的因数个数都是 $8$ 。

  

  由于我们在证明了命题1 之后,很容易发现可能的反素数非常少。所以我们只要暴搜就可以了。

  建议判掉类似于上面举的例子的这种情况。

 


代码

#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
const LL prime[11]={2,3,5,7,11,13,17,19,23,29};
LL n,ans,cnt;
void dfs(LL times,int pos,int ysz,int maxv){
    if (ysz>cnt)
        ans=times,cnt=ysz;
    else if (ysz==cnt&&times<ans)
        ans=times,cnt=ysz;
    for (int i=1;i<=maxv;i++){
        times*=prime[pos];
        if (times>n)
            return;
        dfs(times,pos+1,ysz*(i+1),i);
    }
}
int main(){
    scanf("%d",&n);
    ans=cnt=0;
    dfs(1,0,1,33);
    printf("%lld",ans);
    return 0;
}

 

 
 

 

以上是关于BZOJ1053 [HAOI2007]反素数ant 数论的主要内容,如果未能解决你的问题,请参考以下文章

bzoj1053 [HAOI2007]反素数ant

BZOJ 1053[HAOI2007]反素数ant

bzoj1053: [HAOI2007]反素数ant

bzoj1053: [HAOI2007]反素数ant

BZOJ1053 [HAOI2007]反素数ant 数论

BZOJ——T 1053: [HAOI2007]反素数ant