支持向量机SVM

Posted 烟囱小巫hn

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了支持向量机SVM相关的知识,希望对你有一定的参考价值。

"""
=========================================
SVM: Maximum margin separating hyperplane
=========================================

Plot the maximum margin separating hyperplane within a two-class
separable dataset using a Support Vector Machine classifier with
linear kernel.
"""
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

# we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20

# fit the model
clf = svm.SVC(kernel=\'linear\')
clf.fit(X, Y)

# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

# plot the parallels to the separating hyperplane that pass through the
# support vectors
b = clf.support_vectors_[0]
yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0])

# plot the line, the points, and the nearest vectors to the plane
plt.plot(xx, yy, \'k-\')
plt.plot(xx, yy_down, \'k--\')
plt.plot(xx, yy_up, \'k--\')

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=80, facecolors=\'none\')
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)

plt.axis(\'tight\')
plt.show()


以上是关于支持向量机SVM的主要内容,如果未能解决你的问题,请参考以下文章

MATLAB 支持向量机 (SVM) 交叉验证实现以提高代码速度

机器学习:通俗理解支持向量机SVM及代码实践

机器学习速成宝典模型篇08支持向量机SVM(附python代码)

机器学习基础:通俗理解支持向量机SVM及代码实践

深入解析:svm支持向量机python代码

基于支持向量机SVM的脑部肿瘤识别,脑电波样本熵提取