最小二乘法和最大似然估计的联系和区别(转)

Posted 段子手实习生

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最小二乘法和最大似然估计的联系和区别(转)相关的知识,希望对你有一定的参考价值。

对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。显然,这是从不同原理出发的两种参数估计方法

在最大似然法中,通过选择参数,使已知数据在某种意义下最有可能出现,而某种意义通常指似然函数最大,而似然函数又往往指数据的概率分布函数。与最小二乘法不同的是,最大似然法需要已知这个概率分布函数,这在实践中是很困难的。一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计相同
 
最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数,从概率统计的角度处理线性回归并在似然概率函数为高斯函数的假设下同最小二乘建立了的联系。
 
 

最小二乘法?为神马不是差的绝对值

http://blog.sciencenet.cn/blog-430956-621997.html
 
二者联系和区别
http://blog.csdn.net/rosenor1/article/details/52268039

以上是关于最小二乘法和最大似然估计的联系和区别(转)的主要内容,如果未能解决你的问题,请参考以下文章

最小二乘与最大似然估计之间的关系

自动驾驶 8-4: 最小二乘法和最大似然法 Least Squares and the Method of Maximum Likelihood

自动驾驶 8-4: 最小二乘法和最大似然法 Least Squares and the Method of Maximum Likelihood

极大既然估计和高斯分布推导最小二乘LASSORidge回归

最大似然估计与最小二乘

极大似然估计和最小二乘法