POJ 2429 long long 质因数分解
Posted LuZhiyuan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 2429 long long 质因数分解相关的知识,希望对你有一定的参考价值。
GCD & LCM Inverse
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 16206 | Accepted: 3008 |
Description
Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b.
Input
The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.
Output
For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.
Sample Input
3 60
Sample Output
12 15
Source
题意:
给出gcd和lcm求和最小的两个数a,b
代码:
//a*b=gcd*lcm,x=a/gcd,y=b/gcd,s=lcm/gcd => x*y=s; //想要a+b小 => x*gcd+y*gcd小 => x*y小,x和y越接近sqrt(S)时x+y越小(对勾函数) //所以求出s的素因子然后搞一搞就行了 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<ctime> #include<algorithm> using namespace std; typedef long long ll; const int S=20;//随机算法判定次数,S越大判错概率越小 //计算(a*b)%c;a,b,c<2^63 ll mult_mod(ll a,ll b,ll c){ a%=c; b%=c; ll ret=0; while(b){ if(b&1){ ret+=a; ret%=c; } a<<=1; if(a>=c) a%=c; b>>=1; } return ret; } //计算(x^n)%c ll pow_mod(ll x,ll n,ll c){ if(n==1) return x%c; x%=c; ll tmp=x; ll ret=1; while(n){ if(n&1) ret=mult_mod(ret,tmp,c); tmp=mult_mod(tmp,tmp,c); n>>=1; } return ret; } //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数 //一定是合数返回true,不一定返回false bool check(ll a,ll n,ll x,ll t){ ll ret=pow_mod(a,x,n); ll last=ret; for(int i=1;i<=t;i++){ ret=mult_mod(ret,ret,n); if(ret==1&&last!=1&&last!=n-1) return true; last=ret; } if(ret!=1) return true; return false; } // Miller_Rabin()算法素数判定 //是素数返回true.(可能是伪素数,但概率极小) //合数返回false; bool Miller_Rabin(ll n){ if(n<2) return false; if(n==2) return true; if((n&1)==0) return false; ll x=n-1; ll t=0; while((x&1)==0){ x>>=1; t++; } for(int i=0;i<S;i++){ ll a=rand()%(n-1)+1; if(check(a,n,x,t)) return false; } return true; } ll gcd(ll a,ll b){ if(a==0) return 1; if(a<0) return gcd(-a,b); while(b){ ll t=a%b; a=b; b=t; } return a; } //Pollard_rho质因数分解算法 ll factor[1000];//质因数分解结果(无序的) int tot;//质因数的个数,数组下标从0开始 ll Pollard_rho(ll x,ll c){ ll i=1,k=2; ll x0=rand()%x; ll y=x0; while(1){ i++; x0=(mult_mod(x0,x0,x)+c)%x; ll d=gcd(y-x0,x); if(d!=1&&d!=x) return d; if(y==x0) return x; if(i==k){ y=x0; k+=k; } } } //对n进行素因子分解 void findfac(ll n){ if(Miller_Rabin(n)){//素数 factor[tot++]=n; return; } ll p=n; while(p>=n) p=Pollard_rho(p,rand()%(n-1)+1); findfac(p); findfac(n/p); } ll ans,fa[100]; int nu; void dfs(int st,ll x,ll maxx) { if(st>nu){ if(x<=maxx&&x>ans) ans=x; return; } dfs(st+1,x,maxx); dfs(st+1,x*fa[st],maxx); } int main() { //srand(time(NULL)); ll a,b; while(scanf("%lld%lld",&a,&b)==2){ if(a==b){ printf("%lld %lld\n",a,b); continue; } tot=nu=0; ll s=b/a; findfac(s); sort(factor,factor+tot); fa[0]=factor[0]; for(int i=1;i<tot;i++){//合并相同的素因子 if(factor[i]==factor[i-1]) fa[nu]*=factor[i]; else fa[++nu]=factor[i]; } ll x=(ll)sqrt(s*1.0); ans=1; dfs(0,1,x); printf("%lld %lld\n",ans*a,s/ans*a); } return 0; }
以上是关于POJ 2429 long long 质因数分解的主要内容,如果未能解决你的问题,请参考以下文章
数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429
poj 2429GCD & LCM Inverse (Miller-Rabin素数测试和Pollard_Rho_因数分解)
POJ 2429 GCD & LCM Inverse (大数分解)