有向图最短路 bfs NOIP2014 道路搜索

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了有向图最短路 bfs NOIP2014 道路搜索相关的知识,希望对你有一定的参考价值。

 寻找道路

题目描述

在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。

2 .在满足条件1 的情况下使路径最短。

注意:图G 中可能存在重边和自环,题目保证终点没有出边。

请你输出符合条件的路径的长度。

输入输出格式

输入格式:

输入文件名为road .in。

第一行有两个用一个空格隔开的整数n 和m ,表示图有n 个点和m 条边。

接下来的m 行每行2 个整数x 、y ,之间用一个空格隔开,表示有一条边从点x 指向点y 。

最后一行有两个用一个空格隔开的整数s 、t ,表示起点为s ,终点为t 。

输出格式:

输出文件名为road .out 。

输出只有一行,包含一个整数,表示满足题目描述的最短路径的长度。如果这样的路径不存在,输出- 1 。

输入输出样例

输入样例#1:
3 2  
1 2  
2 1  
1 3  
输出样例#1:
-1
输入样例#2:
6 6  
1 2  
1 3  
2 6  
2 5  
4 5  
3 4  
1 5  
输出样例#2:
3

说明

解释1:

上图所示,箭头表示有向道路,圆点表示城市。起点1 与终点3 不连通,所以满足题

目描述的路径不存在,故输出- 1 。

解释2:

上图所示,满足条件的路径为1 - >3- >4- >5。注意点2 不能在答案路径中,因为点2连了一条边到点6 ,而点6 不与终点5 连通。

对于30%的数据,0<n≤10,0<m≤20;

对于60%的数据,0<n≤100,0<m≤2000;

对于100%的数据,0<n≤10,000,0<m≤200,000,0<x,y,s,t≤n,x≠t。

 

有向图的最短路问题,第一次bfs判连通。

我并不会对第二次搜索起名,就是基于第一次bfs的一个最短路吧。

 

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<queue>
 6 using namespace std;
 7 int n,m,s,e,cnt;
 8 int a[200010],b[200010],head[10010],w[10010];
 9 bool check[10010];
10 struct data{
11     int nex,to;
12 }edge[200010];
13 void add(int start,int end){
14     edge[++cnt].nex=head[start];
15     edge[cnt].to=end;
16     head[start]=cnt;
17 }
18 void bfs(){
19     queue<int>q;
20     q.push(e);
21     check[e]=1;
22     while(!q.empty()){
23         int p=q.front();
24         q.pop();
25         for(int i=head[p];i;i=edge[i].nex)
26             if(!check[edge[i].to]){
27                 q.push(edge[i].to);
28                 check[edge[i].to]=1;
29             }
30     }
31 }
32 bool judge(int x){
33     for(int i=head[x];i;i=edge[i].nex)
34         if(!check[edge[i].to]) return 0;
35     return 1;
36 }
37 void bfsbfs(){
38     queue<int>q;
39     memset(w,0x3f3f3f3f,sizeof(w));
40     w[s]=0;
41     q.push(s);
42     while(!q.empty()){
43         int p=q.front();
44         q.pop();
45         if(!judge(p)) continue;
46         for(int i=head[p];i;i=edge[i].nex)
47             if(w[edge[i].to]==0x3f3f3f3f){
48                 w[edge[i].to]=w[p]+1;
49                 q.push(edge[i].to);
50             }
51     }
52 }
53 int main(){
54     scanf("%d%d",&n,&m);
55     for(int i=1;i<=m;i++){
56         scanf("%d%d",&a[i],&b[i]);
57         add(b[i],a[i]);
58     }
59     scanf("%d%d",&s,&e);
60     bfs();
61     if(!check[s]){
62         printf("-1\n");
63         return 0;
64     }
65     cnt=0;
66     memset(edge,0,sizeof(edge));
67     memset(head,0,sizeof(head));
68     for(int i=1;i<=m;i++) add(a[i],b[i]);
69     bfsbfs();
70     if(w[e]!=0x3f3f3f3f) printf("%d\n",w[e]);
71     else printf("-1\n");
72     return 0;
73 }

 

以上是关于有向图最短路 bfs NOIP2014 道路搜索的主要内容,如果未能解决你的问题,请参考以下文章

寻找道路(NOIP2014)神奇之题。。

[题解]「最短路,Noip2009」最优贸易

DFS图论NOIP2014寻找道路

[NOIP2014]寻找道路

[NOIP2014]寻找道路

[NOIP2014] 寻找道路