POJ 2533 - Longest Ordered Subsequence(最长上升子序列) 题解

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 2533 - Longest Ordered Subsequence(最长上升子序列) 题解相关的知识,希望对你有一定的参考价值。

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置。

题目链接:http://poj.org/problem?id=2533

 

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion
 
 
分析:
DP不解释

 

AC代码:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<cmath>
 5 using namespace std;
 6 int ans,n,num[1002],line[1002];
 7 //line[i]的意义是已经算到第i个数的最长公共子序列 
 8 int main()
 9 {
10     scanf("%d",&n);
11     for(int i = 1;i <= n;++ i)
12         scanf("%d",&num[i]),line[i] = 1;
13     for(int i = 2;i <= n;++ i)
14         for(int j = 1;j < i;++ j)
15             if(num[j] < num[i])
16                 line[i] = max(line[i],line[j]+1);
17     for(int i = 1;i <= n;++ i)
18         ans = max(ans,line[i]);
19     printf("%d\n",ans);
20     return 0;
21 }

 

以上是关于POJ 2533 - Longest Ordered Subsequence(最长上升子序列) 题解的主要内容,如果未能解决你的问题,请参考以下文章

POJ 2533 Longest Ordered Subsequence

POJ2533:Longest Ordered Subsequence

POJ 2533 Longest Ordered Subsequence(裸LIS)

poj 2533 Longest Ordered Subsequence(LIS)

POJ 2533 Longest Ordered Subsequence DP

POJ - 2533 Longest Ordered Subsequence