POJ2533:Longest Ordered Subsequence
Posted mqxnongmin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2533:Longest Ordered Subsequence相关的知识,希望对你有一定的参考价值。
Longest Ordered Subsequence
Time Limit:?2000MS | ? | Memory Limit:?65536K |
Total Submissions:?31680 | ? | Accepted:?13848 |
Description
A numeric sequence of?ai?is ordered if?a1?<?a2?< ... <?aN. Let the subsequence of the given numeric sequence (a1,?a2, ...,?aN)
be any sequence (ai1,?ai2, ...,?aiK), where 1 <=?i1?<?i2?< ... <?iK?<=?N. For example, sequence
(1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
这是一道动归题。
n=3
1 | 7 | 3 | 5 | 9 | 4 | 8 |
dp[]=0;
1 | ap[1]=0 |
7 | dp[2]=1 |
3 | dp[3]=1 |
5 | d[4]=2 |
9 | d[5]=3 |
4 | d[6]=2 |
8 | d[7]=3 |
最后找出最大值然后加一;
详细实现例如以下:
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> using namespace std; const int M = 1000+5; int sequence[M]; //输入的数据 int dp[M]; int main() { int n; while(scanf("%d", &n)!=EOF) { for(int i=1; i<=n; i++) scanf("%d", &sequence[i]); memset(dp, 0, sizeof(dp)); //初始化为0 for(int i=1; i<=n; i++) for(int j=1; j<i; j++) { if(sequence[i]>sequence[j]) dp[i] = max(dp[i], dp[j] + 1); //动归方程 } int ans=0; for(int i=1; i<=n; i++) ans = max(ans, dp[i]); printf("%d\n", ans+1); } return 0; }