词向量-LRWE模型

Posted bbking

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了词向量-LRWE模型相关的知识,希望对你有一定的参考价值。

    上一节,我们介绍利用文本和知识库融合训练词向量的方法,如何更好的融合这些结构化知识呢?使得训练得到的词向量更具有泛化能力,能有效识别同义词反义词,又能学习到上下文信息还有不同级别的语义信息。

    基于上述目标,我们尝试基于CBOW模型,将知识库中抽取的知识融合共同训练,提出LRWE模型。模型的结构图如下:

    下面详细介绍该模型的思想和求解方法。

1. LWE模型

    在Word2vec的CBOW模型中,通过上下文的词预测目标词,目标是让目标词在其给定上下文出现的概率最大,所以词向量训练的结果是与其上下文的词相关联的。然而 CBOW模型只考虑了词语的局部上下文信息,无法很好的表达同义词和反义词等信息。例如下面的几个case:

    为了解决上述问题,本文将同义词和反义词等词汇信息以外部知识的形式,作为词向量训练中的监督数据,让训练得到的词向量能学习到同义、反义等词汇信息,从而能更好地区分同义词和反义词。

1.1 模型思想

   

以上是关于词向量-LRWE模型的主要内容,如果未能解决你的问题,请参考以下文章

词向量原理

词向量与ELMo模型 词向量漫谈

NLP⚠️学不会打我! 半小时学会基本操作 4⚠️词向量模型

NLP⚠️学不会打我! 半小时学会基本操作 4⚠️词向量模型

如何产生好的词向量

一文总结词向量的计算评估与优化