奶牛接力 (Cow Relays, USACO 2007 Nov)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了奶牛接力 (Cow Relays, USACO 2007 Nov)相关的知识,希望对你有一定的参考价值。
题目描述
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
给出一张无向连通图,求S到E经过k条边的最短路。
输入输出格式
输入格式:
-
Line 1: Four space-separated integers: N, T, S, and E
- Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
输出格式:
- Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
输入输出样例
2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9
10
题目大意,求一条从s到e的最短路径,保证路径上包含n条路径
参考国家集训队论文 矩阵乘法在信息学中的应用
对于一个矩阵做k次Floyd,所求得的最短路径包含k个点(不包括起点和终点)
这道题就需要对矩阵做n-1次Floyd,再用矩阵快速幂进行加速优化
#include<bits/stdc++.h> using namespace std; struct Matrix { int m[205][205]; Matrix(){memset(m,63,sizeof(m));} }; int num; Matrix operator *(Matrix a,Matrix b) { Matrix ans; for(int k=1;k<=num;k++) for(int i=1;i<=num;i++) for(int j=1;j<=num;j++) ans.m[i][j]=min(ans.m[i][j],a.m[i][k]+b.m[k][j]); return ans; } Matrix pow(Matrix a,int n) { Matrix ans=a; while(n) { if(n&1) ans=ans*a; a=a*a; n>>=1; } return ans; } map<int,int>mp; int main() { int n,t,s,e; Matrix a; scanf("%d%d%d%d",&n,&t,&s,&e); for(int i=1,u,v,w;i<=t;i++) { scanf("%d%d%d",&w,&u,&v); if(mp[u]==0) mp[u]=++num; if(mp[v]==0) mp[v]=++num; if(w<a.m[mp[u]][mp[v]]) a.m[mp[u]][mp[v]]=a.m[mp[v]][mp[u]]=w; } a=pow(a,n-1); printf("%d",a.m[mp[s]][mp[e]]); }
以上是关于奶牛接力 (Cow Relays, USACO 2007 Nov)的主要内容,如果未能解决你的问题,请参考以下文章
[BZOJ] 1706: [usaco2007 Nov]relays 奶牛接力跑
BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德
[bzoj1706] [usaco2007 Nov]relays 奶牛接力跑
Floyd矩阵乘法BZOJ1706- [usaco2007 Nov]relays 奶牛接力跑