Mahout介绍和简单应用

Posted ahu-lichang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Mahout介绍和简单应用相关的知识,希望对你有一定的参考价值。

Mahout学习

1、Mahout是什么?

  • Mahout是一个算法库,集成了很多算法
  • Apache Mahout  Apache Software FoundationASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。
  • Mahout项目目前已经有了多个公共发行版本。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。
  • 通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到Hadoop集群
  • Mahout 的创始人 Grant Ingersoll 介绍了机器学习的基本概念,并演示了如何使用 Mahout 来实现文档集群、提出建议和组织内容。

2、Mahout是用来干嘛的?

2.1 推荐引擎

2.2 聚类

2.3 分类

3、Mahout协同过滤算法

Mahout使用了Taste来提高协同过滤算法的实现,它是一个基于Java实现的可扩展的,高效的推荐引擎。Taste既实现了最基本的基于用户的和基于内容的推荐算法,同时也提供了扩展接口,使用户可以方便的定义和实现自己的推荐算法。同时,Taste不仅仅只适用于Java应用程序,它可以作为内部服务器的一个组件以HTTPWeb Service的形式向外界提供推荐的逻辑。Taste的设计使它能满足企业对推荐引擎在性能、灵活性和可扩展性等方面的要求。

Taste主要包括以下几个接口:

  • DataModel 是用户喜好信息的抽象接口,它的具体实现支持从任意类型的数据源抽取用户喜好信息。Taste 默认提供 JDBCDataModel FileDataModel,分别支持从数据库和文件中读取用户的喜好信息。
  • UserSimilarity  ItemSimilarity UserSimilarity 用于定义两个用户间的相似度,它是基于协同过滤的推荐引擎的核心部分,可以用来计算用户的邻居,这里我们将与当前用户口味相似的用户称为他的邻居。ItemSimilarity 类似的,计算Item之间的相似度。
  • UserNeighborhood 用于基于用户相似度的推荐方法中,推荐的内容是基于找到与当前用户喜好相似的邻居用户的方式产生的。UserNeighborhood 定义了确定邻居用户的方法,具体实现一般是基于 UserSimilarity 计算得到的。
  • Recommender 是推荐引擎的抽象接口,Taste 中的核心组件。程序中,为它提供一个 DataModel,它可以计算出对不同用户的推荐内容。实际应用中,主要使用它的实现类 GenericUserBasedRecommender 或者 GenericItemBasedRecommender,分别实现基于用户相似度的推荐引擎或者基于内容的推荐引擎。
  • RecommenderEvaluator :评分器。
  • RecommenderIRStatsEvaluator :搜集推荐性能相关的指标,包括准确率、召回率等等。

技术分享

 

4、Mahout协同过滤算法编程

1、创建maven项目

2、导入mahout依赖

    <dependencies>
        <dependency>
            <groupId>org.apache.mahout</groupId>
            <artifactId>mahout</artifactId>
            <version>0.11.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.mahout</groupId>
            <artifactId>mahout-examples</artifactId>
            <version>0.11.1</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>

 

3、下载电影评分数据

下载地址:http://grouplens.org/datasets/movielens/

数据类别:7.2万用户对1万部电影的百万级评价和10万个标签数据

技术分享

技术分享

4、基于用户的推荐

 1 package com.ahu.learnmahout;
 2 
 3 import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
 4 import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
 5 import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
 6 import org.apache.mahout.cf.taste.model.DataModel;
 7 import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
 8 import org.apache.mahout.cf.taste.recommender.RecommendedItem;
 9 import org.apache.mahout.cf.taste.recommender.Recommender;
10 import org.apache.mahout.cf.taste.similarity.UserSimilarity;
11 import org.apache.mahout.cf.taste.similarity.precompute.example.GroupLensDataModel;
12 
13 import java.io.File;
14 import java.util.List;
15 
16 /**
17  * Created by ahu_lichang on 2017/6/23.
18  */
19 public class BaseUserRecommender {
20     public static void main(String[] args) throws Exception {
21         //准备数据 这里是电影评分数据
22         File file = new File("E:\\ml-10M100K\\ratings.dat");
23         //将数据加载到内存中,GroupLensDataModel是针对开放电影评论数据的
24         DataModel dataModel = new GroupLensDataModel(file);
25         //计算相似度,相似度算法有很多种,欧几里得、皮尔逊等等。
26         UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
27         //计算最近邻域,邻居有两种算法,基于固定数量的邻居和基于相似度的邻居,这里使用基于固定数量的邻居
28         UserNeighborhood userNeighborhood = new NearestNUserNeighborhood(100, similarity, dataModel);
29         //构建推荐器,协同过滤推荐有两种,分别是基于用户的和基于物品的,这里使用基于用户的协同过滤推荐
30         Recommender recommender = new GenericUserBasedRecommender(dataModel, userNeighborhood, similarity);
31         //给用户ID等于5的用户推荐10部电影
32         List<RecommendedItem> recommendedItemList = recommender.recommend(5, 10);
33         //打印推荐的结果
34         System.out.println("使用基于用户的协同过滤算法");
35         System.out.println("为用户5推荐10个商品");
36         for (RecommendedItem recommendedItem : recommendedItemList) {
37             System.out.println(recommendedItem);
38         }
39     }
40 }

 

运行结果:

技术分享

5、基于物品的推荐

package com.ahu.learnmahout;

import org.apache.mahout.cf.taste.impl.recommender.GenericItemBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.similarity.ItemSimilarity;
import org.apache.mahout.cf.taste.similarity.precompute.example.GroupLensDataModel;

import java.io.File;
import java.util.List;

/**
 * Created by ahu_lichang on 2017/6/24.
 */
public class BaseItemRecommender {
    public static void main(String[] args) throws Exception {
        //准备数据 这里是电影评分数据
        File file = new File("E:\\ml-10M100K\\ratings.dat");
        //将数据加载到内存中,GroupLensDataModel是针对开放电影评论数据的
        DataModel dataModel = new GroupLensDataModel(file);
        //计算相似度,相似度算法有很多种,欧几里得、皮尔逊等等。
        ItemSimilarity itemSimilarity = new PearsonCorrelationSimilarity(dataModel);
        //构建推荐器,协同过滤推荐有两种,分别是基于用户的和基于物品的,这里使用基于物品的协同过滤推荐
        GenericItemBasedRecommender recommender = new GenericItemBasedRecommender(dataModel, itemSimilarity);
        //给用户ID等于5的用户推荐10个与2398相似的商品
        List<RecommendedItem> recommendedItemList = recommender.recommendedBecause(5, 2398, 10);
        //打印推荐的结果
        System.out.println("使用基于物品的协同过滤算法");
        System.out.println("根据用户5当前浏览的商品2398,推荐10个相似的商品");
        for (RecommendedItem recommendedItem : recommendedItemList) {
            System.out.println(recommendedItem);
        }
        long start = System.currentTimeMillis();
        recommendedItemList = recommender.recommendedBecause(5, 34, 10);
        //打印推荐的结果
        System.out.println("使用基于物品的协同过滤算法");
        System.out.println("根据用户5当前浏览的商品34,推荐10个相似的商品");
        for (RecommendedItem recommendedItem : recommendedItemList) {
            System.out.println(recommendedItem);
        }
        System.out.println(System.currentTimeMillis() -start);
    }
}

 

运行结果:

技术分享

6、评估推荐模型

package com.ahu.learnmahout;


import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.RecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.eval.AverageAbsoluteDifferenceRecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import org.apache.mahout.cf.taste.similarity.precompute.example.GroupLensDataModel;

import java.io.File;

/**
 * Created by ahu_lichang on 2017/6/24.
 */
public class MyEvaluator {
    public static void main(String[] args) throws Exception {
        //准备数据 这里是电影评分数据
        File file = new File("E:\\ml-10M100K\\ratings.dat");
        //将数据加载到内存中,GroupLensDataModel是针对开放电影评论数据的
        DataModel dataModel = new GroupLensDataModel(file);
        //推荐评估,使用均方根
        //RecommenderEvaluator evaluator = new RMSRecommenderEvaluator();
        //推荐评估,使用平均差值
        RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
        RecommenderBuilder builder = new RecommenderBuilder() {

            public Recommender buildRecommender(DataModel dataModel) throws TasteException {
                UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
                UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, dataModel);
                return new GenericUserBasedRecommender(dataModel, neighborhood, similarity);
            }
        };
        // 用70%的数据用作训练,剩下的30%用来测试
        double score = evaluator.evaluate(builder, null, dataModel, 0.7, 1.0);
        //最后得出的评估值越小,说明推荐结果越好
        System.out.println(score);
    }
}

 

7、获取推荐的准确率和召回率

package com.ahu.learnmahout;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.IRStatistics;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.RecommenderIRStatsEvaluator;
import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import org.apache.mahout.cf.taste.similarity.precompute.example.GroupLensDataModel;

import java.io.File;

/**
 * Created by ahu_lichang on 2017/6/24.
 */
public class MyIRStatistics {
    public static void main(String[] args) throws Exception {
        //准备数据 这里是电影评分数据
        File file = new File("E:\\ml-10M100K\\ratings.dat");
        //将数据加载到内存中,GroupLensDataModel是针对开放电影评论数据的
        DataModel dataModel = new GroupLensDataModel(file);
        RecommenderIRStatsEvaluator statsEvaluator = new GenericRecommenderIRStatsEvaluator();
        RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
            public Recommender buildRecommender(DataModel model) throws TasteException {
                UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
                UserNeighborhood neighborhood = new NearestNUserNeighborhood(4, similarity, model);
                return new GenericUserBasedRecommender(model, neighborhood, similarity);
            }
        };
        // 计算推荐4个结果时的查准率和召回率
        //使用评估器,并设定评估期的参数
        //4表示"precision and recall at 4"即相当于推荐top4,然后在top-4的推荐上计算准确率和召回率
        IRStatistics stats = statsEvaluator.evaluate(recommenderBuilder, null, dataModel, null, 4, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);
        System.out.println(stats.getPrecision());
        System.out.println(stats.getRecall());
    }
}

 技术分享

5、Mahout运行在Hadoop集群

 

以上是关于Mahout介绍和简单应用的主要内容,如果未能解决你的问题,请参考以下文章

Mahout - 简单的分类问题

mahout in Action2.2-聚类介绍-K-means聚类算法

如何将 Mahout KMeans 集群集成到应用程序中?

Mahout推荐算法API具体解释一起学Mahout

数据挖掘---推荐算法(Mahout工具)

SVD综述和Mahout中实现