Mahout - 简单的分类问题
Posted
技术标签:
【中文标题】Mahout - 简单的分类问题【英文标题】:Mahout - Simple classification issue 【发布时间】:2012-06-26 17:10:33 【问题描述】:我正在尝试构建一个简单的模型,该模型可以将点分类为 2D 空间的 2 个分区:
-
我通过指定几个点及其所属的分区来训练模型。
我使用模型预测测试点可能落入的组(分类)。
很遗憾,我没有得到预期的答案。我是在代码中遗漏了什么还是我做错了什么?
public class SimpleClassifier
public static class Point
public int x;
public int y;
public Point(int x,int y)
this.x = x;
this.y = y;
@Override
public boolean equals(Object arg0)
Point p = (Point) arg0;
return( (this.x == p.x) &&(this.y== p.y));
@Override
public String toString()
// TODO Auto-generated method stub
return this.x + " , " + this.y ;
public static void main(String[] args)
Map<Point,Integer> points = new HashMap<SimpleClassifier.Point, Integer>();
points.put(new Point(0,0), 0);
points.put(new Point(1,1), 0);
points.put(new Point(1,0), 0);
points.put(new Point(0,1), 0);
points.put(new Point(2,2), 0);
points.put(new Point(8,8), 1);
points.put(new Point(8,9), 1);
points.put(new Point(9,8), 1);
points.put(new Point(9,9), 1);
OnlineLogisticRegression learningAlgo = new OnlineLogisticRegression();
learningAlgo = new OnlineLogisticRegression(2, 2, new L1());
learningAlgo.learningRate(50);
//learningAlgo.alpha(1).stepOffset(1000);
System.out.println("training model \n" );
for(Point point : points.keySet())
Vector v = getVector(point);
System.out.println(point + " belongs to " + points.get(point));
learningAlgo.train(points.get(point), v);
learningAlgo.close();
//now classify real data
Vector v = new RandomAccessSparseVector(2);
v.set(0, 0.5);
v.set(1, 0.5);
Vector r = learningAlgo.classifyFull(v);
System.out.println(r);
System.out.println("ans = " );
System.out.println("no of categories = " + learningAlgo.numCategories());
System.out.println("no of features = " + learningAlgo.numFeatures());
System.out.println("Probability of cluster 0 = " + r.get(0));
System.out.println("Probability of cluster 1 = " + r.get(1));
public static Vector getVector(Point point)
Vector v = new DenseVector(2);
v.set(0, point.x);
v.set(1, point.y);
return v;
输出:
ans =
no of categories = 2
no of features = 2
Probability of cluster 0 = 3.9580985042775296E-4
Probability of cluster 1 = 0.9996041901495722
99% 的输出显示cluster 1
的概率更高。 为什么?
【问题讨论】:
@sean-owen 你能帮我解决这个问题吗? 请发布预期输出 【参考方案1】:问题是您没有包含偏差(截距)项,它始终为 1。 您需要将偏差项 (1) 添加到您的点类中。
这是许多机器学习经验丰富的人犯的一个非常基本的错误。花一些时间学习理论可能是个好主意。 Andrew Ng's lectures 是一个学习的好地方。
要让您的代码提供预期的输出,需要更改以下内容。
-
添加了偏差项。
学习参数太高。改为 10
现在您将获得第 0 类的 P(0)=0.9999。
这是一个给出正确结果的完整工作示例:
import java.util.HashMap;
import java.util.Map;
import org.apache.mahout.classifier.sgd.L1;
import org.apache.mahout.classifier.sgd.OnlineLogisticRegression;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
class Point
public int x;
public int y;
public Point(int x,int y)
this.x = x;
this.y = y;
@Override
public boolean equals(Object arg0)
Point p = (Point) arg0;
return( (this.x == p.x) &&(this.y== p.y));
@Override
public String toString()
return this.x + " , " + this.y ;
public class SimpleClassifier
public static void main(String[] args)
Map<Point,Integer> points = new HashMap<Point, Integer>();
points.put(new Point(0,0), 0);
points.put(new Point(1,1), 0);
points.put(new Point(1,0), 0);
points.put(new Point(0,1), 0);
points.put(new Point(2,2), 0);
points.put(new Point(8,8), 1);
points.put(new Point(8,9), 1);
points.put(new Point(9,8), 1);
points.put(new Point(9,9), 1);
OnlineLogisticRegression learningAlgo = new OnlineLogisticRegression();
learningAlgo = new OnlineLogisticRegression(2, 3, new L1());
learningAlgo.lambda(0.1);
learningAlgo.learningRate(10);
System.out.println("training model \n" );
for(Point point : points.keySet())
Vector v = getVector(point);
System.out.println(point + " belongs to " + points.get(point));
learningAlgo.train(points.get(point), v);
learningAlgo.close();
Vector v = new RandomAccessSparseVector(3);
v.set(0, 0.5);
v.set(1, 0.5);
v.set(2, 1);
Vector r = learningAlgo.classifyFull(v);
System.out.println(r);
System.out.println("ans = " );
System.out.println("no of categories = " + learningAlgo.numCategories());
System.out.println("no of features = " + learningAlgo.numFeatures());
System.out.println("Probability of cluster 0 = " + r.get(0));
System.out.println("Probability of cluster 1 = " + r.get(1));
public static Vector getVector(Point point)
Vector v = new DenseVector(3);
v.set(0, point.x);
v.set(1, point.y);
v.set(2, 1);
return v;
输出:
2 , 2 belongs to 0
1 , 0 belongs to 0
9 , 8 belongs to 1
8 , 8 belongs to 1
0 , 1 belongs to 0
0 , 0 belongs to 0
1 , 1 belongs to 0
9 , 9 belongs to 1
8 , 9 belongs to 1
0:2.470723149516907E-6,1:0.9999975292768505
ans =
no of categories = 2
no of features = 3
Probability of cluster 0 = 2.470723149516907E-6
Probability of cluster 1 = 0.9999975292768505
请注意,我在 SimpleClassifier 类之外定义了 Point 类,但这只是为了使代码更具可读性,并不是必需的。
看看当你改变学习率时会发生什么。阅读有关交叉验证的说明,以了解如何选择学习率。
Learning Rate => Probability of cluster 0
0.001 => 0.4991116089
0.01 => 0.492481585
0.1 => 0.469961472
1 => 0.5327745322
10 => 0.9745740393
100 => 0
1000 => 0
选择学习率:
-
运行随机梯度下降是很常见的,就像我们从一个固定的学习率 α 开始,慢慢地让学习率 α 降低到零一样
算法运行,也可以保证参数收敛到
全局最小值,而不是仅仅围绕最小值振荡。
在这种情况下,当我们使用常数 α 时,您可以进行初始选择,运行梯度下降并观察成本函数,并相应地调整学习率。说明here
【讨论】:
你能分享交叉验证注释的链接吗,你提到的解释如何选择训练率? 嗨@mucaho,我已经编辑了我的答案以添加它。关于 ML 的其他说明,我会推荐 cs229.stanford.edu/materials.html 您说的是P(0)=0.9999 for class 0
,但您的控制台输出显示Probability of cluster 0 = 2.470723149516907E-6
和Probability of cluster 1 = 0.9999975292768505
。我验证了输出,在我的机器上是一样的。我错过了什么吗?【参考方案2】:
我认为我认为您的分类示例可能存在问题:
使用OnlineLogisticRegression
训练的默认值(learningRate
等...)
引入恒定偏差(它只是另一个具有恒定值1
的预测变量)
Shuffle 训练数据(不要先提供第 1 个集群对应的训练数据,然后再提供给第 2 个集群的数据)
显着增加训练数据量
有关此潜在问题的更多详细信息,请参阅书籍Mahout in Action。
“修复”潜在问题后的结果:
测试点<0.5, 0.5>
被分类到cluster 0
的概率约为。 0.89
在多次运行中始终如一。
这听起来像是一个合理的输出,因为原点附近的其他点(用于训练模型)也属于cluster 0
。
代码
public class SimpleClassifier
public static class Point
public int x;
public int y;
public Point(int x, int y)
this.x = x;
this.y = y;
@Override
public boolean equals(Object arg0)
Point p = (Point) arg0;
return ((this.x == p.x) && (this.y == p.y));
@Override
public String toString()
// TODO Auto-generated method stub
return this.x + " , " + this.y;
public static void main(String[] args)
Map<Point, Integer> points = new HashMap<Point, Integer>();
points.put(new Point(0, 0), 0);
points.put(new Point(1, 1), 0);
points.put(new Point(1, 0), 0);
points.put(new Point(0, 1), 0);
points.put(new Point(2, 2), 0);
points.put(new Point(8, 8), 1);
points.put(new Point(8, 9), 1);
points.put(new Point(9, 8), 1);
points.put(new Point(9, 9), 1);
OnlineLogisticRegression learningAlgo = new OnlineLogisticRegression(2, 3, new L1());
System.out.println("training model \n");
for (int i=0; i<100; i++)
List<Point> randomPoints = new ArrayList<>(points.keySet());
Collections.shuffle(randomPoints);
for (Point point : randomPoints)
Vector v = getVector(point);
System.out.println(point + " belongs to " + points.get(point));
learningAlgo.train(points.get(point), v);
learningAlgo.close();
//now classify real data
Vector v = new RandomAccessSparseVector(3);
v.set(0, 0.5);
v.set(1, 0.5);
v.set(2, 1);
Vector r = learningAlgo.classify(v);
System.out.println(r);
System.out.println("ans = ");
System.out.println("no of categories = " + learningAlgo.numCategories());
System.out.println("no of features = " + learningAlgo.numFeatures());
System.out.println("Probability of cluster 0 = " + (1.0d - r.get(0)));
System.out.println("Probability of cluster 1 = " + r.get(0));
public static Vector getVector(Point point)
Vector v = new DenseVector(3);
v.set(0, point.x);
v.set(1, point.y);
v.set(2, 1);
return v;
【讨论】:
次要问题 - 不要以改变问题的方式编辑问题,即添加额外的解释。该信息可以包含在您的答案中(就像您在此处所做的那样)或对问题的评论。 @admdrew 好的,我认为附加解释是问题的一部分(例如,用户提到控制台输出错误,但他没有提到他希望看到的内容 - 我只是提取了他的期望来自源代码,因此其他人不需要浏览源代码即可看到他预期的控制台输出)以上是关于Mahout - 简单的分类问题的主要内容,如果未能解决你的问题,请参考以下文章