线性规划算法原理介绍

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了线性规划算法原理介绍相关的知识,希望对你有一定的参考价值。

线性规划定义:

求满足约束的最优目标,目标是变量的线性函数,约束是变量的相等或不等表达式。

单纯形算法

1 松弛变量 为将不等式转化为等式添加的非负变量 
比如 将f(xi) >0 变成 xj= f(xi) ,那么xj就是松弛变量

主元操作(pivot)

1 任意在目标函数中系数为正的基本变量xi, 计算对其约束最紧的松弛变量yj 
2 将yj= f(x) 转换成 xi = f(x,yj) 
3 将上式代入其余约束和目标函数 ,从而生成新的线性方程组

单纯形算法(simplex)

1 将标准型转化为基本解可行的松弛型 
2 如果目标函数里还有正系数,就执行主元操作 
3 按照基本解,求基本变量和目标值,即位最优解

单纯形算法证明:

求证: 如果线性规划有最优解,那么单纯形算法得到的解一定是最优解;如果线性规划没有最优解,那么单纯形算法一定会返回无解 
已知: 
1 松弛变量>0 
2 第一步转化好松弛型,其基本解可行 
证明: 
如果线性规划没有最优解,那么单纯形算法一定会返回无解 
证明: 因为基本解可行,所以一定有解 
如果线性规划有最优解,那么单纯形算法得到的解一定是最优解 
证明: 
1 目标函数都是等价变换的,不会影响其值 
2 最后目标函数系数都是负的,而基本变量和松弛变量都是非负数


本文出自 “12033555” 博客,请务必保留此出处http://12043555.blog.51cto.com/12033555/1940287

以上是关于线性规划算法原理介绍的主要内容,如果未能解决你的问题,请参考以下文章

DP-01动态规划算法原理介绍

了解动态规划算法:原理实现和优化指南

了解动态规划算法:原理实现和优化指南

简言翻译记忆的原理:用动态规划算法求解最短编辑距离

算法#03--具体解释最小二乘法原理和代码

神经网络算法:线性神经网络算法原理