hiho 1182 : 欧拉路·三

Posted jzssuanfa

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hiho 1182 : 欧拉路·三相关的知识,希望对你有一定的参考价值。

1182 : 欧拉路·三

这时题目中给的提示:

小Ho:是这种。每次转动一个区域不是相当于原来数字去掉最左边一位,并在最后加上1或者0么。

于是我考虑对于"XYYY",它转动之后能够变成"YYY0"或者"YYY1"。我就将全部的数字0~2^N-1看作2^N个点。连接全部的("XYYY","YYY0"),("XYYY","YYY1")。

比方当N=3时,我得到了这样一个图:

我要做的就是找一条路径,从一个点出发,走过全部的点后。再回到起点。可是我发现好像非常难的样子。

小Hi:那当然了。

你这样构造出来的路径叫做哈密顿回路。不是那么easy能够求解的。

小Ho:哎??那我应该怎么做。

小Hi:事实上你的想法是没问题的,可是须要进行一下变换。在你的构图中我们是用点来表示数字,所以须要经过每个点。假设我们用边来表示每个数字呢?

小Ho:怎么用边表示数字?

小Hi:事实上也非常easy。比方说数字"10011",分别删掉它第一个数字和最后一个数字。得到"1001","0011"。然后我们连接一条从"1001"到"0011"的有向边。表示数字"10011"。则我们能够得到构图的方法:

对于N。我们构造一个包括2^(N-1)个点和2^N条边的图。点的编号从0到2^(N-1)-1。编号为i的点表示数字i。对于随意两个点,假设点i,点j满足点i的后n-2个数字和点j的前n-2个数字同样,则我们连接有向边(i,j)。而边(i,j)表示了数字((i << 1)+(j & 1))。比方对于N=3的时候,我们能够得到:

能够非常easy证明对于随意不同边(i,j),其表示的数字一定不同。

小Ho:这样构图话。仅仅要找到一条欧拉回路就能够了。可是一定会有欧拉回路么?

小Hi:当然能了。对于有向图,其存在欧拉路的条件是,至多有两个点的入度不等于出度。且这两个点满足:当中一个点入度比出度多1,还有一个点出度比入度多1。

若全部点的入度都等于出度。则一定存在欧拉回路。这能够通过和无向图欧拉路相同的方法进行构造证明。

而我们构造的图。由构造方法能够知道对于随意一个点。其入度一定为2,出度一定为2。

所以它必然存在欧拉回路。

在有向图中找欧拉路的方法,也仍然能够使用Fleury算法。写成伪代码的话:

DFS(u):
	While (以u为起点。且未被删除的边e(u,v))
		删除边e(u,v)
		DFS(v)
	End
	PathSize ← PathSize + 1
	Path[ PathSize ] ← u
		

可是。有一点要注意。在使用Fleury算法计算有向图的欧拉路时。我们须要将path[]倒序输出才干得到正确的路径。

小Ho:那找到欧拉回路之后呢?

小Hi:找到欧拉回路之后仅仅要对该条欧拉回路进行拼接就能够得到我们目标的圆盘状态了。

小Ho:好。我大概明确了。我这就来试试!

 

题目分析:

提示中说的非常清楚: 好好看看上面的解说。 非常聪明的地方是把图一变成了图二(图二也就是用边表示n位二进制能够表示的全部数。

n=3时, 是0~7),节省了空间。

 假设存在一个欧拉回路, 也就是存在一条路径每条边都走过而且仅仅走一遍。 最后回到原点, 那么就能够说这个转盘能够表示n位二进制能够表示的全部数。用fleury求路径。 边球路径边记录,fleury不明确点这里


#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<vector>
using namespace std;

int n, top, key, final[40000], ans[40000];
vector<int> vec[17000];

void init()//初始化把全部边标记出来
{
    for(int i = 0; i < (1 << n - 1); i++)
    {
        int j = i << 1; // 点i向左移一位
        int t = 1 << (n - 1);
        j = j & (t - 1);//舍去第一位
        vec[i].push_back(j); //最后一位加0
        vec[i].push_back(j+1); //最后一位添1
    }
}
void dfs(int x)
{
    ans[++top] = x;
    if(vec[x].size() > 0)
    {
        int tmp = vec[x][0];
        vec[x].erase(vec[x].begin()+0);//要记得删除便利过的点
        dfs(tmp);
    }
}
void fleury(int x)
{
    top = 1;
    ans[top] = x;
    while(top > 0)
    {
        if(vec[ans[top]].size() > 0)//假设可扩展。 则dfs可扩展的哪条路线
        {
            top--;
            dfs(ans[top+1]);
        }
        else//该点x没有其它的边能够先走了(即不可扩展), 那么就用final记录下来
        {
            final[++key] = ans[top];
            //ans仅仅是记录路径的中间记录, 可能会变, 一定要用final做最后的记录
            top--;
        }
    }
}
int main()
{
    while(scanf("%d", &n) != EOF)
    {
        for(int i = 0; i < (1 << n); i++) vec[i].clear();
        init();
        key = 0;
        fleury(0);
        for(int i = 1; i <= (1 << n); i++)//将路径的每一个值的最后一个二进制的值求出就可以
        {
            int tmp = final[i] & 1;
            printf("%d", tmp);
        }
        cout << endl;
    }
    return 0;
}


以上是关于hiho 1182 : 欧拉路&#183;三的主要内容,如果未能解决你的问题,请参考以下文章

hiho36 二分·二分查找二分查找

欧拉路&欧拉回路

[hiho1043]后缀数组一·重复旋律

[HIHO1143]骨牌覆盖问题·一(矩阵快速幂,递推)

hiho #1329 平衡树·Splay

[HIHO1184]连通性二·边的双连通分量(双连通分量)