Longest Common Substring(最长公共子序列)
Posted 勿忘初心0924
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Longest Common Substring(最长公共子序列)相关的知识,希望对你有一定的参考价值。
Longest Common Substring |
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 37 Accepted Submission(s): 28 |
Problem Description
Given two strings, you have to tell the length of the Longest Common Substring of them.
For example: str1 = banana str2 = cianaic So the Longest Common Substring is "ana", and the length is 3. |
Input
The input contains several test cases. Each test case contains two strings, each string will have at most 100000 characters. All the characters are in lower-case.
Process to the end of file. |
Output
For each test case, you have to tell the length of the Longest Common Substring of them.
|
Sample Input
banana cianaic |
Sample Output
3 |
Author
Ignatius.L
|
/*---------------------------------------------- File: F:\ACM源代码\数据结构--后缀数组\Longest_Common_Substring.cpp Date: 2017/5/30 16:55:36 Author: LyuCheng ----------------------------------------------*/ /* 题意:最长公共子序列 思路:问题很多,DP基本不用考虑,因为时间复杂度空间复杂度都不允许,NlogN的算法也不行,最坏的情况 转化成LIS的数组是1e10空间复杂的不允许,所以只能利用后缀数组的性质,将两个连接,然后前后两个 前缀在两个不同的字符串中的时候,更新height的值,因为后缀加前缀,刚好是公共子序列 */ #include <bits/stdc++.h> #define MAXN 100005 using namespace std; char s1[MAXN],s2[MAXN]; /****************************************后缀数组模板****************************************/ const int maxn=1000000+100; struct SuffixArray { char s[maxn]; int sa[maxn],rank[maxn],height[maxn]; int t1[maxn],t2[maxn],c[maxn],n; int dmin[maxn][20]; void build_sa(int m) { int i,*x=t1,*y=t2; for(i=0;i<m;i++) c[i]=0; for(i=0;i<n;i++) c[x[i]=s[i]]++; for(i=1;i<m;i++) c[i]+=c[i-1]; for(i=n-1;i>=0;i--) sa[--c[x[i]]]=i; for(int k=1;k<=n;k<<=1) { int p=0; for(i=n-k;i<n;i++) y[p++]=i; for(i=0;i<n;i++)if(sa[i]>=k) y[p++]=sa[i]-k; for(i=0;i<m;i++) c[i]=0; for(i=0;i<n;i++) c[x[y[i]]]++; for(i=1;i<m;i++) c[i]+=c[i-1]; for(i=n-1;i>=0;i--) sa[--c[x[y[i]]]] = y[i]; swap(x,y); p=1,x[sa[0]]=0; for(i=1;i<n;i++) x[sa[i]]= y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]? p-1:p++; if(p>=n) break; m=p; } } void build_height()//n不能等于1,否则出BUG { int i,j,k=0; for(i=0;i<n;i++)rank[sa[i]]=i; for(i=0;i<n;i++) { if(k)k--; j=sa[rank[i]-1]; while(s[i+k]==s[j+k])k++; height[rank[i]]=k; } } void initMin() { for(int i=1;i<=n;i++) dmin[i][0]=height[i]; for(int j=1;(1<<j)<=n;j++) for(int i=1;i+(1<<j)-1<=n;i++) dmin[i][j]=min(dmin[i][j-1] , dmin[i+(1<<(j-1))][j-1]); } int RMQ(int L,int R)//取得范围最小值 { int k=0; while((1<<(k+1))<=R-L+1)k++; return min(dmin[L][k] , dmin[R-(1<<k)+1][k]); } int LCP(int i,int j)//求后缀i和j的LCP最长公共前缀 { int L=rank[i],R=rank[j]; if(L>R) swap(L,R); L++;//注意这里 return RMQ(L,R); } }sa; /****************************************后缀数组模板****************************************/ int main(){ // freopen("in.txt","r",stdin); while(scanf("%s%s",s1,s2)!=EOF){ int n=strlen(s1); int m=strlen(s2); for(int i=0;i<n;i++){ sa.s[i]=s1[i]; } sa.s[n]=‘$‘; for(int i=n;i<n+m;i++){ sa.s[i]=s2[i-n]; } sa.n=m+n+1; sa.build_sa(MAXN); sa.build_height(); int maxLCS=-1; for(int i=0;i<m+n+1;i++){ if(i==0){ maxLCS=max(maxLCS,sa.height[i]); }else{ if((sa.sa[i]-n)*(sa.sa[i-1]-n)<0)//保证两后缀是来自不同的字符串的 maxLCS=max(maxLCS,sa.height[i]); } } printf("%d\n",maxLCS); } return 0; }
以上是关于Longest Common Substring(最长公共子序列)的主要内容,如果未能解决你的问题,请参考以下文章
SPOJ1812 Longest Common Substring II
[SPOJ1812]Longest Common Substring II
刷题SPOJ 1811 LCS - Longest Common Substring