广义线性模型2
Posted jhcelue
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了广义线性模型2相关的知识,希望对你有一定的参考价值。
岭回归和普通最小二乘法回归的一个重要差别是前者对系数模的平方进行了限制。例如以下所看到的:
In [1]: from sklearn import linear_model In [2]: clf = linear_model.R linear_model.RandomizedLasso linear_model.RandomizedLogisticRegression linear_model.Ridge linear_model.RidgeCV linear_model.RidgeClassifier linear_model.RidgeClassifierCV In [2]: clf = linear_model.Ridge(alpha = .5) In [3]: clf.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1]) Out[3]: Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, solver=‘auto‘, tol=0.001) In [4]: clf.coef_ Out[4]: array([ 0.34545455, 0.34545455]) In [5]: clf.intercept_ Out[5]: 0.13636363636363641解析:
(1)sklearn.linear_model.Ridge类构造方法
class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None,
tol=0.001, solver=‘auto‘)
(2)sklearn.linear_model.Ridge类实例的属性和方法
岭回归分析是一种专用于共线性数据分析的有偏预计回归方法,实质上是一种改良的最小二乘预计法,通过放弃最小
二乘法的无偏性。以损失部分信息、减少精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的
耐受性远远强于最小二乘法。
岭回归分析主要解决两类问题:数据点少于变量个数;变量间存在共线性。
Examples: Plot Ridge coefficients as a function of the regularization
print(__doc__) import numpy as np import pylab as pl from sklearn import linear_model # X is the 10x10 Hilbert matrix X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]) y = np.ones(10) ############################################################################### # Compute paths n_alphas = 200 alphas = np.logspace(-10, -2, n_alphas) clf = linear_model.Ridge(fit_intercept=False) coefs = [] for a in alphas: clf.set_params(alpha=a) clf.fit(X, y) coefs.append(clf.coef_) ############################################################################### # Display results ax = pl.gca() ax.set_color_cycle([‘b‘, ‘r‘, ‘g‘, ‘c‘, ‘k‘, ‘y‘, ‘m‘]) ax.plot(alphas, coefs) ax.set_xscale(‘log‘) ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis pl.xlabel(‘alpha‘) pl.ylabel(‘weights‘) pl.title(‘Ridge coefficients as a function of the regularization‘) pl.axis(‘tight‘) pl.show()图形输出。例如以下所看到的:
解析:
(1)希尔伯特矩阵
在线性代数中,希尔伯特矩阵是一种系数都是单位分数的方块矩阵。详细来说一个希尔伯特矩阵H的第i横行第j纵列的
系数是:
举例来说。的希尔伯特矩阵就是:
希尔伯特矩阵的系数也能够看作是下面积分:
也就是当向量是关于变量x 的各阶幂时关于积分范数的格拉姆矩阵。
希尔伯特矩阵是低条件矩阵的典型样例。
与希尔伯特矩阵的数值计算是十分困难的。
举例来说,当范数为矩阵范数
时希尔伯特矩阵的条件数大约是,远大于1。
(2)np.arange()方法
In [31]: 1. / (np.arange(1, 11)) Out[31]: array([ 1. , 0.5 , 0.33333333, 0.25 , 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 ]) In [32]: (1. / (np.arange(1, 11))).shape Out[32]: (10,)
(3)np.newaxis属性
In [5]: np.arange(0, 10) Out[5]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) In [6]: type(np.arange(0, 10)) Out[6]: numpy.ndarray In [7]: np.arange(0, 10).shape Out[7]: (10,) In [8]: np.arange(0, 10)[:, np.newaxis] Out[8]: array([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]) In [9]: np.arange(0, 10)[:, np.newaxis].shape Out[9]: (10, 1)(4)广播原理
In [25]: x = np.arange(0, 5) In [26]: x[:, np.newaxis] Out[26]: array([[0], [1], [2], [3], [4]]) In [27]: x[np.newaxis, :] Out[27]: array([[0, 1, 2, 3, 4]]) In [28]: x[:, np.newaxis] + x[np.newaxis, :] Out[28]: array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7], [4, 5, 6, 7, 8]])(5)10阶希尔伯特矩阵X
In [33]: X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]) In [34]: X Out[34]: array([[ 1. , 0.5 , 0.33333333, 0.25 , 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 ], [ 0.5 , 0.33333333, 0.25 , 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 , 0.09090909], [ 0.33333333, 0.25 , 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333], [ 0.25 , 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333, 0.07692308], [ 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857], [ 0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857, 0.06666667], [ 0.14285714, 0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857, 0.06666667, 0.0625 ], [ 0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857, 0.06666667, 0.0625 , 0.05882353], [ 0.11111111, 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857, 0.06666667, 0.0625 , 0.05882353, 0.05555556], [ 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857, 0.06666667, 0.0625 , 0.05882353, 0.05555556, 0.05263158]])
(6)np.ones()方法
In [35]: y = np.ones(10) In [36]: y Out[36]: array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) In [37]: y.shape Out[37]: (10,)
(7)numpy.logspace()方法
numpy.logspace(start, stop, num=50, endpoint=True, base=10.0)
说明:Return numbers spaced evenly on a log scale. In linear space, the sequence starts at base ** start (base to
the power of start) and ends with base ** stop (see endpoint below).
In [38]: n_alphas = 200 In [39]: alphas = np.logspace(-10, -2, n_alphas) In [40]: alphas Out[40]: array([ 1.00000000e-10, 1.09698580e-10, 1.20337784e-10, 1.32008840e-10, 1.44811823e-10, 1.58856513e-10, 1.74263339e-10, 1.91164408e-10, 2.09704640e-10, ..., 5.23109931e-03, 5.73844165e-03, 6.29498899e-03, 6.90551352e-03, 7.57525026e-03, 8.30994195e-03, 9.11588830e-03, 1.00000000e-02]) In [41]: alphas.shape Out[41]: (200,) In [42]: 1.00000000e-10 Out[42]: 1e-10(8)set_params(**params)方法
(9)matplotlib.pyplot.gca(**kwargs)方法
Return the current axis instance. This can be used to control axis properties either using set or the Axes methods,
for example, setting the x axis range.
參考文献:
[1] 岭回归: http://baike.baidu.com/link?
url=S1DwT9XFOthlB5hjGP6Ramxt-fvtCJ-RUXYVSw-z9t7-hZIojL7eroUQwKaJd5KE9-jVEQeRtxZeuUz59SBE6q
[2] 正则化、归一化含义解析: http://sobuhu.com/ml/2012/12/29/normalization-regularization.html
[3] 希尔伯特矩阵: http://zh.wikipedia.org/zh-cn/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%9F%A9%E9%98%B5
[4] 岭回归分析总结: http://download.csdn.net/detail/shengshengwang/7225251
以上是关于广义线性模型2的主要内容,如果未能解决你的问题,请参考以下文章