斐波那契数与二分法的递归与非递归算法及其复杂度分析

Posted 滴巴戈

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了斐波那契数与二分法的递归与非递归算法及其复杂度分析相关的知识,希望对你有一定的参考价值。

1. 什么是斐波那契数?

这里我借用百度百科上的解释:斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加。特别指出:0不是第一项,而是第零项。

在这个斐波那契数列中的数字,就被称为斐波那契数。这个级数与大自然植物的关系极为密切。几乎所有花朵的花瓣数都来自这个级数中的一项数字:菠萝表皮方块形鳞苞形成两组旋向相反的螺线,它们的条数必须是这个级数中紧邻的两个数字(如左旋8行,右旋13行);还有向日葵花盘……直到最近的1993年,人们才对这个古老而重要的级数给出真正满意的解释:此级数中任何相邻的两个数,次第相除,其比率都最为接近0.618034……这个值,它的极限就是所谓的"黄金分割数"。

2. 求第N个斐波那契数

求第N个斐波那契数比较简单可以直接套用公式n = 0,1 时,fib(n) = 1;n > =2 时,fib(n) = fib(n-2) + fib(n-1)在计算时有两种算法:递归和非递归。如下:

 1 //非递归算法
 2 long long fib1(size_t N) {
 3     long long a = 0, b = 1, c = 0;
 4     if (N < 2) {
 5         return N;
 6     }
 7     else {
 8         for (long long i = 2; i <= N; ++i) {
 9             c = a + b;
10             a = b;
11             b = c;
12         }
13     }
14         return c;
15 }
16 int main()
17 {
18     printf("%lld", fib1(10));
19     getchar();
20     return 0;
21 }  //此算法最大的优点是不存在重复计算,故效率比递归算法快的多得多。
 1 //递归算法
 2 long long fib2(size_t N) {
 3     if (N < 2) 
 4         return N;
 5     return fib2(N - 1) + fib2(N - 2);
 6 }
 7 int main()
 8 {
 9     printf("%lld", fib2(10));
10     getchar();
11     return 0;
12 }

递归可以使程序看起来比较简洁,但缺点是效率比较低,并且可能导致栈溢出,当需要计算的数稍大一点,就需要很长的计算时间,因此需要灵活使用递归。

3. 二分法查找

3.1 二分查找的非递归算法

 1 template<typename T>  
 2 T* BinarySearch(T* array,int number,const T& data)  //data要查找的数,number查找范围长度,array要查找的数组
 3 {  
 4        assert(number>=0);  
 5        int left = 0;  
 6        int right = number-1;  
 7        while (right >= left)  
 8        {  
 9               int mid = (left&right) + ((left^right)>>1);  
10               if (array[mid] > data)  
11               {  
12                      right = mid - 1;  
13               }  
14               else if (array[mid] < data)  
15               {  
16                      left = mid + 1;  
17               }  
18               else  
19               {  
20                      return (array + mid);  
21               }  
22        }  
23        return NULL;  
24 }  

3.2 二分查找递归算法

 1 template<typename T>  
 2 T* BinarySearch(T* left,T* right,const T& data)  
 3 {  
 4        assert(left);  
 5        assert(right);  
 6        if (right >=left)  
 7        {  
 8               T* mid =left+(right-left)/2;  
 9               if (*mid == data)  
10                      return mid;  
11               else  
12                      return *mid > data ? BinarySearch(left, mid - 1, data) : BinarySearch(mid + 1, right, data);  
13        }  
14        else  
15        {  
16               return NULL;  
17        }  
18 }  

4. 时间复杂度与空间复杂度

时间复杂度:一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用"O"来表示数量级,给出算法的时间复杂度。
      T(n)=O(f(n));                 
  它表示随着问题规模的n的增大,算法的执行时间的增长率和f(n)的增长率相同,这称作算法的渐进时间复杂度,简称时间复杂度。而我们一般讨论的是最坏时间复杂度,这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,分析最坏的情况以估算算法指向时间的一个上界。
时间复杂度的分析方法:
(1)时间复杂度就是函数中基本操作所执行的次数;
(2)一般默认的是最坏时间复杂度,即分析最坏情况下所能执行的次数;
(3)忽略掉常数项;
(4)关注运行时间的增长趋势,关注函数式中增长最快的表达式,忽略系数;
(5)计算时间复杂度是估算随着n的增长函数执行次数的增长趋势;
(6)递归算法的时间复杂度为:递归总次数 * 每次递归中基本操作所执行的次数
    常用的时间复杂度有以下七种,算法时间复杂度依次增加:O(1)常数型、O(log2 n)对数型、O(n)线性型、O(nlog2n)二维型、O(n^2)平方型、O(n^3)立方型、O(2^n)指数型。
空间复杂度:
  算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数,与问题的规模没有关系。算法的空间复杂度S(n)定义为该算法所耗费空间的数量级。
  S(n)=O(f(n))  若算法执行时所需要的辅助空间相对于输入数据量n而言是一个常数,则称这个算法的辅助空间为O(1); 
  递归算法的空间复杂度:递归深度N*每次递归所要的辅助空间, 如果每次递归所需的辅助空间是常数,则递归的空间复杂度是 O(N)。

5. 斐波那契数的时间复杂度与空间复杂度分析

5.1 非递归算法时间复杂度分析

 使用非递归算法求到第n个斐波那契数,是从第2个数开始,将前两个数相加求求后一个数,再将后一个数赋值给前一个数,再计算前两个数相加的结果。依次类推直到第n个数,用n-1个数和n-2个数相加求出结果,这样的好处是,我们只计算了n-1次就求出了结果,即时间复杂度为O(n);我们以代码中测试数10为例详解求第十个数的过程。当N=10时,进入函数首先判断,然后走下面的分支开始计算

计算了N-1次,得出了结果所以时间复杂度是O(N)。

非递归算法空间复杂度分析
此函数内部最多时一共开辟了a, b, c, i四个变量空间复杂度是常数,即为O(1)。

5.2 递归算法时间复杂度分析

在递归算法中,求解fib2(n),把它推到求解fib2(n-1)和fib2(n-2)。也就是说,为计算fib2(n),必须先计算

fib2(n-1)和fib2(n-2),而计算fib2(n-1)和fib2(n-2),时按照表达式及计算法则,需先计算又必须先计算fib2(n-1),而fib2(n-1)由fib2(n-2)和fib2(n-3)计算得来,而这之中的和fib2(n-2)由fib2(n-3)和fib2(n-4)计算得来......依次类推,表面上看不出有何复杂度,但是仔细分析可知,每一个计算fib2(n)的分支都会衍生出计算直至(1)和fib(0),也就是说每个分支都要自己计算数本身到1的斐波那契数列,这样就增加了庞大且冗杂的运算量,还是以10 为例详细计算说明

图中数字代表第N个斐波那契数,图中没有全部将计算步骤画出来,但是已经足够说明问题,它的每一步计算都被分成计算前两个斐波那契数,以此类推。那么这就形成了一颗二叉树,虽然不是满二叉树,但是我们分析的是最坏时间复杂度,而且只要估算出来递归次数随N增长的趋势即可,故可以近似将它看成满二叉树,其中的节点数就是计算的次数,也就是复杂度,由公式:节点数=2^h-1(h为树的高度)可得O(2^n)。

递归的时间复杂度是:  递归次数*每次递归中执行基本操作的次数,所以时间复杂度是: O(2^N)

递归算法空间复杂度分析:

递归最深的那一次所耗费的空间足以容纳它所有递归过程。递归产生的栈侦是要销毁的,所以空间也就释放了,要返回上一层栈侦继续计算+号后面的数,所以它所需要的空间不是一直累加起来的,之后产生的栈侦空间都小于递归最深的那一次所耗费的空间。

递归的深度*每次递归所需的辅助空间的个数 ,所以空间复杂度是:O(N)

6. 求二分法的时间复杂度和空间复杂度

 6.1  非递归算法分析

分析:
假设最坏情况下,循环X次之后找到,则:2^x=n; x=logn(算法中如果没写,log默认底数为2)
循环的基本次数是log2 N,所以: 时间复杂度是O(logN);
由于辅助空间是常数级别的所以:空间复杂度是O(1);

6.2 递归算法复杂度分析

假设最坏情况下,循环X次之后找到,则:2^x=n; x=logn(算法中如果没写,log默认底数为2)
递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的:
时间复杂度:O(log2 N);
空间复杂度:O(log2N )。

7.  扩展-----不用循环法和递归法求1+2+3+...+N(思考一种复杂度为O(1)的解法)

 1 class Temp
 2 {
 3 public:
 4     Temp(){
 5         ++N;
 6         Sum += N;
 7     }
 8     static void Reset(){
 9         N = 0;
10         Sum = 0;
11     }
12     static int GetSum(){
13         return Sum;
14     }
15 private:
16     static int N;
17     static int Sum;
18 };
19 int Temp::N = 0;
20 int Temp::Sum = 0;
21 int solution_Sum(int n){
22     Temp::Reset();
23     Temp *a = new Temp[n];
24     delete[]a;
25     a = 0;
26     return Temp::GetSum();
27 }
28 int main(){
29     cout << solution_Sum(100) << endl;
30     getchar();
31     return 0;
32 
33 }

以上是关于斐波那契数与二分法的递归与非递归算法及其复杂度分析的主要内容,如果未能解决你的问题,请参考以下文章

python递归与非递归实现斐波那契数列

递归求斐波那契数列

斐波那契数列(递归非递归算法)

17. 计算斐波那契数(非递归方法)

非递归和递归分别实现求第n个斐波那契数。

斐波那契递归算法