斯坦福大学公开课:监督学习应用,梯度下降

Posted 橙子牛奶糖

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了斯坦福大学公开课:监督学习应用,梯度下降相关的知识,希望对你有一定的参考价值。

监督学习应用例子:以房屋大小和价格为例,本次采用47个样本。

m: training examples,训练样本集

x: "input",variables/features变量,x为输入变量,在本次例子中,表示房屋大小

y: "output", variable/"target" variable,y为输出变量,在本次例子中,表示房屋价格

(x,y): training examples 表示训练样本

监督学习的流程如下(以房子为例):

                                        training set(训练集)

                                                ↓

                                    learning algorithm(学习算法)

                                                ↓

new living area(新的房子大小)   →  h(假设与之相关的函数)→estimate price(根据h函数评估房子价格)

对于函数h(x)=hθ(x)=θ01x12x2

其中x1表示房子大小,x2表示卧室数量;

hθ(x)表示特征向量x预测的价格;

因此公式会转为为:

n表示特征向量的个数;

在本例中,特征向量只有2,一个是房子大小,另外一个是卧室数量,因此n为2,如下公式所示,

J(θ)表示的是真实值和预测值之间的差距。利用的原理是最小二乘法。

对于J(θ),我们要做的就是使J(θ)最小化,J(θ)越小,说明我们预测的结果越准确。

梯度下降法的原理是通过多次迭代,当J(θ)不再发生很大变化,说明已经收敛了。

随机梯度下降:当样本量很大时,比如几十亿的训练样本量。这个时候采用随机梯度下降法比较合适。可以有效节省时间。但是随机梯度下降法不会精确收敛到全局的最小值。也就是意味着,你在下降过程中,可能在全局最小值附近徘徊,有可能还会往高处走。但是你的参数总体趋向于全局最小值附近徘徊。

随机梯度下降法的公式:

repeat {

 for J: 1 to m {

( for all i )

 }

}

表示对参数向量的,所有第i个位置按公式的方式进行更新。这个方法的好处是,修改参数时,仅需要查看第一个训练样本,并且利用第一个训练样本进行更新,之后使用第二个训练样本执行下一次更新。这样调整参数就会快很多。因为你不需要在调整之前,遍历所有的数据。

以上是关于斯坦福大学公开课:监督学习应用,梯度下降的主要内容,如果未能解决你的问题,请参考以下文章

斯坦福公开课-机器学习2.监督学习应用-梯度下降(吴恩达 Andrew Ng)

斯坦福公开课1:机器学习的动机与应用

斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感

斯坦福吴恩达教授机器学习公开课第二讲笔记——有/无监督学习+线性回归

机器学习具体解释线性回归梯度下降最小二乘的几何和概率解释

斯坦福公开课-机器学习1.机器学习的动机和应用(吴恩达 Andrew Ng)