poj 1182 (带权并查集)
Posted zzq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj 1182 (带权并查集)相关的知识,希望对你有一定的参考价值。
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 71361 | Accepted: 21131 |
Description
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
Sample Input
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
Sample Output
3
欸困惑许久的一道题,寒假学并查集时已经遇见,卡在带权并查集一直没时间or感觉很复杂就没学,前几日突然想起,便想起他了.
带权并查集感觉在于对向量偏移的理解和对getf()函数递归查找祖先的深刻理解,怎奈数学砸砸看见数学就头疼>_<
本题体面给出了三个类,并查集的作用:将具有相同性质的某些点归到一颗树里,他们有共同的祖先.
难不成三个类要用三个并查集?显然用三个只会更加复杂,我们不妨利用带权并查集点到祖先的距离的不同来表示点与祖先的关系,将所有的点归到一颗树下,假设有两个点x,y在一颗树里且我们知道其到祖先的距离d[x],d[y],
显然利用这两个"距离"(关系)我们足以推出x,y的关系,这便涉及到向量了.
带权并查集主要就是在getf()函数递归的过程中顺便改变到根节点的距离这一步!合并函数中也需要进行小小的改变.
推论:已知x,x的父亲t=f[x],根祖先root和d[x],d[t]; 我们要做的就是根据 d[x],d[t]更新出当前正确的d[x]的值.
穷举出所有的可能后:{0,1,2}--{0,1,2}不难得出结论 d[x]=(d[x]+d[t])%3;
为了保证 d[t]的值是x的父亲到祖先的距离我们需要先递归x的父亲更新他父亲的距离......
如果不先进行递归的话,d[t]的值可能并不是t到其根的距离导致结果错误!
merg函数类似利用向量推出公式即可,利用0,1,2的巧妙之处在于可以用(d-1)直接表示出x与y的关系.
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int f[50005],d[50005];
int getf(int v)
{
if(f[v]==v) return v;
int t=f[v];
f[v]=getf(f[v]);
d[v]=(d[v]+d[t])%3;
return f[v];
}
void merg(int x,int y,int rx,int ry,int D)
{
f[ry]=rx;
d[ry]=(3-d[y]+(D-1)+d[x])%3;
}
int main()
{
int n,k,x,y,D,ans=0,i,j;
cin>>n>>k;
for(i=1;i<=n;++i) f[i]=i;
memset(d,0,sizeof(d));
while(k--){
scanf("%d%d%d",&D,&x,&y);
if(x>n||y>n||(x==y&&D==2)) {++ans;continue;}
int rx=getf(x),ry=getf(y);
if(rx==ry){
if((D-1)!=(3-d[x]+d[y])%3) ++ans;
}
else merg(x,y,rx,ry,D);
}
cout<<ans<<endl;
return 0;
}
以上是关于poj 1182 (带权并查集)的主要内容,如果未能解决你的问题,请参考以下文章
带权并查集(含种类并查集)经典模板 例题:①POJ 1182 食物链(经典)②HDU - 1829 A bug's life(简单) ③hihoCoder 1515 : 分数调查(示例代码(代