Adjacency matrix 传球问题
Posted rsapaper
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Adjacency matrix 传球问题相关的知识,希望对你有一定的参考价值。
建模
问题是什么
知道了问题是什么答案就ok了
重复考虑 与 重复计算
程序可以重复考虑 但往目标篮子中放入时,放不放把握好就ok了。
集合
交集
并集
w
路径规划
字符串处理
42423 42424 42432 42434 43123 43124 43132 43134 43142 43143 43212 43213 43214 43232 43234 43242 43243 43412 43413 43414 43423 43424 43432 43434 183well@well:/home/etc/project$ cat w.php <?php $wx = 0; $pass = array(11,22,33,44,5,6,7,8,9,0); for($w=11111;$w<44445;$w++){ $w.=\'\'; if(substr($w,0,1)!=1 && substr($w,strlen($w)-1,1)!=1) { $flag=0; foreach($pass as $val){ $val .=\'\'; if(strpos($w,$val)!==false)$flag = 1; } if($flag == 0){echo $w,"\\n";$wx++;} } $w += 1-1; } echo $wx; die();
https://en.wikipedia.org/wiki/Adjacency_matrix
Undirected Graphs
The convention followed here (for undirected graphs) is that each edge adds 1 to the appropriate cell in the matrix, and each loop adds 2. This allows the degree of a vertex to be easily found by taking the sum of the values in either its respective row or column in the adjacency matrix.
Directed Graphs
In directed graphs, the in-degree of a vertex can be computed by summing the entries of the corresponding row, and the out-degree can be computed by summing the entries of the corresponding column.
w
传球问题的终极解法 吴炜超
http://old.pep.com.cn/rjwk/gzsxsxkj/2011/sxkj4/sxkj4ts/201106/t20110623_1050797.htm
以上是关于Adjacency matrix 传球问题的主要内容,如果未能解决你的问题,请参考以下文章
Convert Adjacency matrix into edgelist
Client / Server Interoperability Support Matrix for Different Oracle Versions (Doc ID 207303.1)(代码片段