Codeforces 622F 「数学数论」「数学规律」

Posted 徐暾

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Codeforces 622F 「数学数论」「数学规律」相关的知识,希望对你有一定的参考价值。

题意:

给定n和k,求

1 ≤ n ≤ 109, 0 ≤ k ≤ 106

思路:

题目中给的提示是对于给定的k我们可以求出一个最高次为k+1的关于n的通项公式。

根据拉格郎日插值法,我们可以通过k+2个离散的点来确定这个通项。所以求出前k+2项,然后就可以确定公式。

拉格郎日差值法传送门:http://www.guokr.com/post/456777/

最后得出的公式是酱紫的:(公式来自卿学姐博客)

然后问题来了,有除法如何搞定模运算...这个就用到逆元的运算了,逆元的定义就是大家都学过的离散数学里边的那个定义,求解方法有两种,一种是根据扩展欧几里得,构造ax+by=1(mod某数),如果取模的某数是一个素数的话可以根据费马小定理a^(p-1)=1(mod某数),结合快速幂求解。

注意有j!=i的条件...所以要求的逆元数是两个,好好理解下这个式子可以用阶乘优化复杂度。

传送门:http://www.cnblogs.com/james47/p/3871782.html

坑点:

注意逆元的运算应该放到等式的前边。然后注意阶乘的正负。

代码:(基本是跟卿学姐一个模子刻出来的==

#include<bits/stdc++.h>
using namespace std;
long long mod=(1e9)+7;
long long p[1000050];
long long fac[1000050];
long long quick_pow(long long a,long long b,long long m){
    long long tmp=1;
    while(b){
        if(b&1){
            tmp*=a;
            tmp%=m;
        }
        a*=a;
        a%=m;
        b>>=1;
    }
    return tmp;
}
int main()
{
    long long n,k;
    cin>>n>>k;
    for(int i=1;i<=k+2;i++){
        p[i]=(p[i-1]+quick_pow(i,k,mod))%mod;
    }
    fac[0]=1;
    for(int i=1;i<=1000010;i++){
        fac[i]=fac[i-1]*i;
        fac[i]%=mod;
    }
    if(n<=k+2){
        cout << p[n] << endl;
        return 0;
    }
    long long chang=1;
    for(int i=1;i<=k+2;i++){
        chang*=n-i;
        chang%=mod;
    }
    long long ans=0;
    for(int i=1;i<=k+2;i++){
        long long a=quick_pow(n-i,mod-2,mod);
        long long b=quick_pow((fac[i-1]*fac[k+2-i])%mod,mod-2,mod);
        if((k+2-i)%2)b=-b;
        ans =(ans + p[i]*chang%mod*b%mod*a)%mod;//这句一定要注意逆元运算先
    }
    cout << ans << endl;
}

 

以上是关于Codeforces 622F 「数学数论」「数学规律」的主要内容,如果未能解决你的问题,请参考以下文章

Codeforces 963A Alternating Sum 数论+数学

Codeforces 451 E. Devu and Flowers(组合数学,数论,容斥原理)

数论与数学专题练习(201802~201805)

Codeforces 1106F Lunar New Year and a Recursive Sequence (数学线性代数线性递推数论BSGS扩展欧几里得算法)

数学分支(转)

数论&数学