论级数

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了论级数相关的知识,希望对你有一定的参考价值。

级数1

1/3=0.3333333333........
2/3=0.6666666666........

根据1式,可得:

(1/3)x3=3x0.3333333333........=0.9999999999........

而,(1/3)x3=1

所以:1=0.9999999999........

级数2

芝诺悖论:内容是说,阿克琉斯与乌龟赛跑,但阿克琉斯永远也追不上乌龟的故事.

假设,乌龟在阿克琉斯前面100m处,乌龟的行进速度是0.1m/s,阿克琉斯的行进速度是10m/s,以这样的前提,开始赛跑,按照芝诺的说法,阿克琉斯永远也追不上乌龟,因为:每次,阿克琉斯都必须行进到他与乌龟之间距离的中点,这个时间段内,乌龟也行进了一段距离,接下来,阿克琉斯又开始超越乌龟,又会行进到他与乌龟距离之间的中点,这时候,乌龟又行进了一段距离,不管时间多短,距离多小,但,阿克琉斯是永远也追不上乌龟的.

我们来简单的了解下他的证明过程:

一般地,设:乌龟先行进a,乌龟的速度为v1,阿克琉斯的速度为v2.

对于阿克琉斯而言:

到达第1个终点,需要时间:a/v2

到达第2个终点,需要时间:v1xa/v2/v2

到达第3个终点,需要时间:v1xv1xa/v2/v2/v2

到达第n个终点,需要时间:v1^(n-1)xa/v2^n

通项:an=v1^(n-1)xa/v2^n

由an可得Sn:Sn=ax(1-(v1/v2)^2)/v2-v1

对于limSn,当n->无穷时,limSn=a/v2-v1

即,Sn收敛于a/v2-v1

换言之,时间的累积永远不会超过这个数:a/v2-v1

所以,阿克琉斯也就永远追不上乌龟了.

然而,现实生活,阿克琉斯是可以追上乌龟并超越乌龟的.

个人以为,这是1维与3维之间的错觉.

级数3

例如,考虑以下这个无穷级数:

1-1/2+1/3-1/4+1/5-...........

我们怎么求这个无穷级数的和呢?

我们或许会这样计算:

1-1/2+1/3-1/4+1/5-...........=(1-1/2)+(1/3-1/4)+(1/5-1/6)+....=1/2+1/3x4+1/5x6...

计算这个结果是比较困难的,但,显然,我们可以看出,他的和是比1/2大的数.

可是,如果一个人,稍微偷点懒,这样计算:

1-1/2+1/3-1/4+1/5-...=(1+1/3+1/5+1/7+...)-(1/2+1/4+1/6+1/8+...)=(1+1/3+1/5+1/7+...)-(1/2+1/4+1/6+1/8+...)+(1/2+1/4+1/6+1/8+...)-(1/2+1/4+1/6+1/8+...)=(1+1/3+1/5+1/7+...)+(1/2+1/4+1/6+1/8+...)-2x(1/2+1/4+1/6+1/8+...)=(1+1/2+1/3+...)-(1+1/2+1/3+...)=0

但是,正确答案到底是0还是比1/2大的数呢?想来想去,似乎两者都正确.

又例如,1-1+1-1+1-1+...

为了计算这个级数,有3个人采用了3种不同的方法计算,结果,得出3种不同的答案.

a.从第1个数起,相邻俩个数结合,答案0

1-1+1-1+1-1+...=(1-1)+(1-1)+(1-1)+...=0+0+0+...=0

b.从第2个数起,相邻俩个数结合,答案1

1-1+1-1+1-1+...=1+(-1+1)+(-1+1)+...=1+0+0+...=1

c.代数法计算,设x,答案1/2

设,x=1-1+1-1+1-1+...

1-1+1-1+1-1+...=1-(1-1+1-1+1-...)=1-x=x

即,x=1-x,则,x=1/2

附:

上帝的杰作

作者:key

自然,上帝最完美的杰作
对称,宇宙最稳定的结构
圆球,宇宙最稳定的图样
时常在梦中
敬畏她的美

或许,可发现新的美
当然,应欣赏旧的美
何必去问上帝为何如此创造自然美?

君不见
无极套无极
自然之理也

致所有科学工作者.

以上是关于论级数的主要内容,如果未能解决你的问题,请参考以下文章

:无穷级数

高数敛散性?

SQL 多级查询(级数不定)

微积分——幂级数

调和级数是发散的

广义二项级数 & 广义指数级数 学习笔记