HDU3518 Boring counting

Posted SilverNebula

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU3518 Boring counting相关的知识,希望对你有一定的参考价值。

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3182    Accepted Submission(s): 1319


Problem Description
035 now faced a tough problem,his english teacher gives him a string,which consists with n lower case letter,he must figure out how many substrings appear at least twice,moreover,such apearances can not overlap each other.
Take aaaa as an example.”a” apears four times,”aa” apears two times without overlaping.however,aaa can’t apear more than one time without overlaping.since we can get “aaa” from [0-2](The position of string begins with 0) and [1-3]. But the interval [0-2] and [1-3] overlaps each other.So “aaa” can not take into account.Therefore,the answer is 2(“a”,and “aa”).
 

 

Input
The input data consist with several test cases.The input ends with a line “#”.each test case contain a string consists with lower letter,the length n won’t exceed 1000(n <= 1000).
 

 

Output
For each test case output an integer ans,which represent the answer for the test case.you’d better use int64 to avoid unnecessary trouble.
 

 

Sample Input
aaaa ababcabb aaaaaa #
 

 

Sample Output
2 3 3
 

 

Source
 

 

Recommend
zhengfeng

 

字符串 后缀数组

求至少不重叠出现2次以上的子串有多少个

 

建立后缀数组,按height把后缀们分成不同的组,同一组内都是相同的后缀,统计它们出现的最大最小位置即可

 

 1 /*by SilverN*/
 2 #include<algorithm>
 3 #include<iostream>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 #include<vector>
 8 using namespace std;
 9 const int mxn=100010;
10 int read(){
11     int x=0,f=1;char ch=getchar();
12     while(ch<0 || ch>9){if(ch==-)f=-1;ch=getchar();}
13     while(ch>=0 && ch<=9){x=x*10+ch-0;ch=getchar();}
14     return x*f;
15 }
16 int sa[mxn],rk[mxn],ht[mxn];
17 int wa[mxn],wb[mxn],wv[mxn],cnt[mxn];
18 char s[mxn];
19 inline int cmp(int *r,int a,int b,int l){
20     return r[a]==r[b] && r[a+l]==r[b+l];
21 }
22 void GSA(int *sa,int n,int m){
23     int i,j,k;
24     int *x=wa,*y=wb;
25     for(i=0;i<m;i++)cnt[i]=0;
26     for(i=0;i<n;i++)cnt[x[i]=s[i]-a+1]++;
27     for(i=1;i<m;i++)cnt[i]+=cnt[i-1];
28     for(i=n-1;i>=0;i--)sa[--cnt[x[i]]]=i;
29     for(int p=0,j=1;p<n;j<<=1,m=p){
30         for(p=0,i=n-j;i<n;i++)y[p++]=i;
31         for(i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
32         for(i=0;i<n;i++)
33             wv[i]=x[y[i]];
34         for(i=0;i<m;i++)cnt[i]=0;
35         for(i=0;i<n;i++)cnt[wv[i]]++;
36         for(i=1;i<m;i++)cnt[i]+=cnt[i-1];
37         for(i=n-1;i>=0;i--)sa[--cnt[wv[i]]]=y[i];
38         swap(x,y);
39         p=1;x[sa[0]]=0;
40         for(i=1;i<n;i++)
41             x[sa[i]]=cmp(y,sa[i],sa[i-1],j)?p-1:p++;
42     }
43     return;
44 }
45 void GHT(int n){
46     int i,j,k=0;
47     for(i=1;i<=n;i++)rk[sa[i]]=i;
48     for(i=0;i<n;i++){
49         if(k)k--;
50         j=sa[rk[i]-1];
51         while(s[i+k]==s[j+k])k++;
52         ht[rk[i]]=k;
53     }
54     return;
55 }
56 int ans=0;
57 bool solve(int n,int lim){
58     bool flag=0;
59     int mxpos=-100,mnpos=mxn;
60     for(int i=1;i<=n;i++){
61         if(ht[i]<lim){
62             if(mxpos-mnpos>=lim){        
63                 ans++;flag=1;
64             }
65             mxpos=-100,mnpos=mxn;
66         }
67         mxpos=max(mxpos,sa[i]);
68         mnpos=min(mnpos,sa[i]);
69     }
70     if(mxpos-mnpos>=lim)flag=1,ans++;
71     return flag;
72 }
73 int main(){
74     int i,j;
75     while(scanf("%s",s) && s[0]!=#){
76         int len=strlen(s);
77         s[len]=a-1;
78         GSA(sa,len+1,28);
79         GHT(len);
80         ans=0;
81 //        for(i=0;i<=len;i++)printf("%c",s[i]);puts("");
82 //        for(i=1;i<=len;i++)printf("%d ",sa[i]);puts("");
83 //        for(i=1;i<=len;i++)printf("%d ",ht[i]);puts("");
84         for(i=1;i<len;i++){
85             if(!solve(len,i))break;
86         }
87         printf("%d\n",ans);
88     }
89     return 0;
90 }

 

以上是关于HDU3518 Boring counting的主要内容,如果未能解决你的问题,请参考以下文章

[HDU]3518——Boring counting

[HDU3518]Boring counting(后缀数组)

HDU3518 Boring counting

hdu3518 Boring Counting[后缀排序]

Boring counting HDU - 3518 (后缀数组)

hdu 3518 Boring counting 后缀数组 height分组