HDU1024 最大m子段和
Posted LuZhiyuan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU1024 最大m子段和相关的知识,希望对你有一定的参考价值。
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 27582 Accepted Submission(s): 9617
Problem Description
Now I think you have got an AC in Ignatius.L‘s "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don‘t want to write a special-judge module, so you don‘t have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don‘t want to write a special-judge module, so you don‘t have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
题意:
求最大m子段和。
代码:
//最大m子段和递推公式:dp[i][j]=max(dp[i][j-1]+num[j],dp[i-1][t]+num[j]) (i<=t<=j-1) //优化:因为每次都要求一个最大的dp[i-1][t](i<=t<=j-1),可以每次求出来dp[i][j]时保存 //这个值,到下一次时直接用就行了,这样每次就只用到了dp[i][j]和dp[i][j-1],可以省去一维。 #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int maxn=1000006; const int inf=0x7fffffff; int dp[maxn],fdp[maxn],num[maxn]; int main() { int m,n,maxnum; while(scanf("%d%d",&m,&n)==2){ for(int i=1;i<=n;i++) scanf("%d",&num[i]); memset(dp,0,sizeof(dp)); memset(fdp,0,sizeof(fdp)); for(int i=1;i<=m;i++){ maxnum=-inf; for(int j=i;j<=n;j++){ dp[j]=max(dp[j-1]+num[j],fdp[j-1]+num[j]); fdp[j-1]=maxnum; maxnum=max(maxnum,dp[j]); } } printf("%d\n",maxnum); } return 0; }
以上是关于HDU1024 最大m子段和的主要内容,如果未能解决你的问题,请参考以下文章
HDU 1024 Max Sum Plus Plus动态规划求最大M子段和详解