BZOJ 2179 [快速傅里叶变换 高精度乘法]
Posted Candy?
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ 2179 [快速傅里叶变换 高精度乘法]相关的知识,希望对你有一定的参考价值。
2179: FFT快速傅立叶
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3108 Solved: 1599
[Submit][Status][Discuss]
Description
给出两个n位10进制整数x和y,你需要计算x*y。
Input
第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。
数据范围:
n<=60000
n<=60000
扔个模板
注意读入字符转换成系数 系数转换成整数
#include <iostream> #include <cstdio> #include <string> #include <algorithm> #include <cmath> using namespace std; const int N=3e5+5; const double PI=acos(-1); inline int read(){ char c=getchar();int x=0,f=1; while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f; } struct Vector{ double x,y; Vector(double a=0,double b=0):x(a),y(b){} }; typedef Vector CD; Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);} Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);} Vector operator *(Vector a,Vector b){return Vector(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);} Vector operator /(Vector a,int b){return Vector(a.x/b,a.y/b);} Vector conj(Vector a){return Vector(a.x,-a.y);} struct FastFourierTransform{ CD omega[N],omegaInv[N]; void ini(int n){ for(int k=0;k<n;k++) omega[k]=CD(cos(2*PI/n*k),sin(2*PI/n*k)), omegaInv[k]=conj(omega[k]); } void transform(CD *a,int n,CD *omega){ int k=0; while((1<<k)<n) k++; for(int i=0;i<n;i++){ int t=0; for(int j=0;j<k;j++) if(i&(1<<j)) t|=(1<<(k-j-1)); if(i>t) swap(a[t],a[i]); } for(int l=2;l<=n;l<<=1){ int m=l>>1; for(CD *p=a;p!=a+n;p+=l) for(int k=0;k<m;k++){ CD t=omega[n/l*k]*p[k+m]; p[k+m]=p[k]-t; p[k]=p[k]+t; } } } void DFT(CD *a,int n){transform(a,n,omega);} void IDFT(CD *a,int n){ transform(a,n,omegaInv); for(int i=0;i<n;i++) a[i]=a[i]/n; } void FFT(CD *a,CD *b,int m){ int n=1; while(n<m) n<<=1; ini(n); DFT(a,n);DFT(b,n); for(int i=0;i<n;i++) a[i]=a[i]*b[i]; IDFT(a,n); } }fft; CD A[N],B[N]; int n,m,c[N]; char s1[N],s2[N]; int main(){ freopen("in","r",stdin); n=read();m=n+n-1; scanf("%s%s",s1,s2); for(int i=0;i<n;i++) A[i].x=s1[n-i-1]-‘0‘,B[i].x=s2[n-i-1]-‘0‘; fft.FFT(A,B,m); for(int i=0;i<m;i++) c[i]=int(A[i].x+0.5);//printf("c %d\n",c[i]); for(int i=0;i<m;i++) c[i+1]+=c[i]/10,c[i]%=10; while(c[m]) m++; for(int i=m-1;i>=0;i--) printf("%d",c[i]); return 0; }
以上是关于BZOJ 2179 [快速傅里叶变换 高精度乘法]的主要内容,如果未能解决你的问题,请参考以下文章