后缀排序(codevs 1500)
Posted Cola
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了后缀排序(codevs 1500)相关的知识,希望对你有一定的参考价值。
题目描述 Description
天凯是MIT的新生。Prof. HandsomeG给了他一个长度为n的由小写字母构成的字符串,要求他把该字符串的n个后缀(suffix)从小到大排序。
何谓后缀?假设字符串是S=S1S2……Sn,定义Ti=SiSi+1……Sn。T1, T2, …, Tn就叫做S的n个后缀。
关于字符串大小的比较定义如下(比较规则和PASCAL中的定义完全相同,熟悉PASCAL的同学可以跳过此段):
若A是B的前缀,则A<B;否则令p满足:A1A2…Ap-1=B1B2…Bp-1,Ap<>Bp。如果Ap<Bp,则A<B;否则A>B。
输入描述 Input Description
第一行一个整数n(n<=15000)
第二行是一个长度为n字串。
输出描述 Output Description
输出文件包含n行,第i行是一个整数pi。表示所有的后缀从小到大排序后是Tp1, Tp2, …, Tpn。
样例输入 Sample Input
4
abab
样例输出 Sample Output
3
1
4
2
数据范围及提示 Data Size & Hint
说明:后缀排序后的顺序是T3=”ab”, T1=”abab”, T4=”b”, T2=”bab”。所以输出是3, 1, 4, 2。
/*后缀数组裸题*/ #include<cstdio> #include<iostream> #define N 15010 using namespace std; int n,m=256,s[N],sa[N],t1[N],t2[N],c[N]; bool cmp(int *y,int a,int b,int k){ int a1=y[a],b1=y[b]; int a2=a+k>=n?-1:y[a+k]; int b2=b+k>=n?-1:y[b+k]; return a1==b1&&a2==b2; } void DA(){ int *x=t1,*y=t2; for(int i=0;i<m;i++) c[i]=0; for(int i=0;i<n;i++) c[x[i]=s[i]]++; for(int i=1;i<m;i++) c[i]+=c[i-1]; for(int i=n-1;~i;i--) sa[--c[x[i]]]=i; for(int k=1,p=0;k<=n;k*=2,m=p,p=0){ for(int i=n-k;i<n;i++) y[p++]=i; for(int i=0;i<n;i++) if(sa[i]>=k) y[p++]=sa[i]-k; for(int i=0;i<m;i++) c[i]=0; for(int i=0;i<n;i++) c[x[y[i]]]++; for(int i=1;i<m;i++) c[i]+=c[i-1]; for(int i=n-1;~i;i--) sa[--c[x[y[i]]]]=y[i]; swap(x,y);p=1;x[sa[0]]=0; for(int i=1;i<n;i++) if(cmp(y,sa[i-1],sa[i],k)) x[sa[i]]=p-1; else x[sa[i]]=p++; if(p>=n) break; } } int main(){ char ch[N]; scanf("%d%s",&n,ch); for(int i=0;i<n;i++) s[i]=ch[i]; DA();for(int i=0;i<n;i++)printf("%d ",sa[i]+1); return 0; }
以上是关于后缀排序(codevs 1500)的主要内容,如果未能解决你的问题,请参考以下文章