《数学分析Analysis》の 学习笔记
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《数学分析Analysis》の 学习笔记相关的知识,希望对你有一定的参考价值。
>> 皮亚诺(Peano)公理
定义自然数
公理2.1 0是一个自然数.
公理2.2 若n是自然数, 则n++也是自然数.
公理2.3 0不是任何自然数的后继, 即对于每个自然数n , 都有n++ ≠ 0.
公理2.4 不同的自然数必有不同的后继者; 也就是说, 若n, m是自然数且n≠m, 则n++ ≠ m++. 等价地说, 若n++ = m++, 则必有n = m.
公理2.5(数学归纳原理) 设P(n)是关于自然数的一个性质, 假设P(0)是真的 , 并假设只要P(n)是真的, 则P(n++)也是真的. 那么对于每个自然数n, P(n)都是真的.
//单个自然数有限, 自然数的集合无限.
>> 自然数的运算
1. 增长(++)
2. 加法
定义2.2.1(自然数的加法) 设m是自然数. 为使m加上0, 我们定义0+m:=m. 现归纳的假定已定义好如何使m加上n. 那么把m加上n++则定义为(n++)+m := (n+m)++.
定义
0+m = m
(n++)+m = (n+m)++
推论
m+0 = m
①0+0 = 0
②假设n+0 = n
∵ (n++)+0 = (n+0)++ = n++
∴ 假设成立.
n+(m++) = (n+m)++
①0+(m++) = m++
②假设 n+(m++) = (n+m)++
∵(n++)+(m++) = ( n+(m++) )++ = (n+m)++ ++ = ( (n++)+m )++
∴假设成立.
n++ = n+1
n+1 = n+(0++) = (n+0)++ = n++
交换律: 对于任何自然数n, m, n+m = m+n.
①0+m = m+0
②假设 n+m = m+n
∵(n++)+m = (n+m)++ = n+(m++)
∴假设成立.
结合律: 对于任何自然数a, b, c, (a+b)+c = a+(b+c)
①(a+0)+c = a+c = a+(0+c)
②假设 (a+b)+c = a+(b+c)
∵( a+(b++) )+c = ( (a+b)++ )+c = ( (a+b)+c )++ = ( a+(b+c) )++ = a+(b+c)++ = a+( (b++)+c )
∴假设成立.
消去律: 设a, b, c为自然数, 且a+b = a+c, 则b = c.
①0+b = 0+c → b = c
②假设a+b = a+c → b = c
∵ 设 (a++)+b = (a++)+c
(a+b)++ = (a+c)++ → a+b = a+c(公理2.4) → b = c
∴假设成立.
定义2.2.7: 一个自然数叫做正的, 当且仅当它不等于0.
推论
1. 若a是正数, b是自然数. 则a+b是正数.
①a+0是正数
②假设a+b是正数
∵a+(b++) = (a+b)++ ≠ 0
∴假设成立.
2. 若a, b是自然数, 且a+b = 0. 则a = 0, b = 0.
(反证): 假设a≠0, 则a是正数. 由推论1, a+b是正数. 与a+b=0矛盾.
∴a=0, b=0(同理).
3.设a是正数, 则存在一个自然数b, 使b++ = a.
①0++ = 1
②假设b++ = a
∵a++ = (b++)++ = (b++)+1 ≠ 0
∴假设成立.
未完待续......
以上是关于《数学分析Analysis》の 学习笔记的主要内容,如果未能解决你的问题,请参考以下文章
SAP-PS笔记结果分析方法01 基于收入的结果分析方式(Result Analysis Method)