集中式日志分析平台 - ELK Stack - Filebeat 压测
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了集中式日志分析平台 - ELK Stack - Filebeat 压测相关的知识,希望对你有一定的参考价值。
参考技术A 任何一款采集 agent 进行公司内全面推广前都需要进行性能测试以及资源限制功能测试,以保证:对于 Filebeat 这款号称 golang 编写,性能强于 logstahs-forwarder 的采集 agent,我们也需要这样进行严谨对待。
硬件选择虚拟机,6cores + 16GB Mem + 175GB SSD + 1000Mbps 带宽;
Filebeat 配置,输出到 console:
Filebeat 配置,输出到 Kafka:
我们开启 Filebeat 的 6060 端口,并使用 python 脚本进行指标采集。
expvar_rates.py ,每秒统计出 Filebeat 指标,主要看:
Step1. 启动 Filebeat (172.16.134.8)
Step2. 启动统计脚本
Step3. 启动 tsar
Step4. 写入压测数据(6个进程写入,6千万条日志)
在 6 进程数据写入日志文件时,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 0.8 cores。
在 6 进程数据写入日志文件后,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 1.6 cores。
小结:
测试步骤和上述一致,区别在于配置文件需要输出到 Kafka。
在 6 进程数据写入日志文件时,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 0.7~0.8 cores。
在 6 进程数据写入日志文件后,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 2.0 cores。
小结:
测试步骤和上述一致,区别在于配置文件需要输出到 Kafka。
和上述步骤不同的是,启动 Filebeat 时需要 systemd 限制 CPU、句柄数,根据之前的理论,句柄数限制在 100 已经非常够用,CPU 限制在 1 core。
修改 /usr/lib/systemd/system/filebeat.service :
执行 reload:
对 CPU 进行限制:
确认是否限制成功:
有如下输出表示OK:
在 6 进程数据写入日志文件时,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 0.7 ~ 0.8 cores。
在 6 进程数据写入日志文件后,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 1.0 cores,限制生效。
小结:
在 6 进程数据写入日志文件时,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 0.75 ~ 0.9 cores。
在 6 进程数据写入日志文件后,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 1.0 cores,限制生效。
小结:
在 6 进程数据写入日志文件时,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 0.7 ~ 0.75 cores。
在 6 进程数据写入日志文件后,我们在开启 python 统计脚本的窗口得到如下稳定的统计数据:
我们在 tsar 看到的统计数据为:
我们在 top 中可以看到 Filebeat 大致占据了 0.9 cores,未达到限制。
小结:
A. FB 全力采集 247B 数据(真实环境类似日志长度),速率为 ~ 40K/s,CPU 开销为 2 cores;
B. FB 在 CPU 限制 1 cores 情况下,采集 247B 数据速率为 ~ 20K/s,可以认为单核采集速率为 ~ 20K/s/core;
C. 日志单行数据越大,吞吐越小,5KB 每行已经非常夸张,即使如此,没有压缩的情况下带宽消耗 35MBps,gzip 压缩率一般为 0.3~0.4,占用带宽为 10.5~14MBps,对于千兆网卡来说压力较小;
集中式日志分析平台 Elastic Stack(介绍)
-
一、ELK 介绍
-
二、ELK的几种常见架构
>>ELK 介绍<<
ELK 构建在开源基础之上,让您能够安全可靠地获取任何来源、任何格式的数据,并且能够实时地对数据进行搜索、分析和可视化。
最近查看 ELK 官方网站,发现新一代的日志采集器 Filebeat,他是 Beats 家族其中的一员,性能超越 logstash,部署简单,占用资源少,可以很方便的和 logstash,ES 对接。
从官方网站可以看出新一代 ELK 架构如下:
1、Beats
Beats 平台集合了多种单一用途数据采集器。这些采集器安装后可用作轻量型代理,从成百上千或成千上万台机器向 Logstash 或 Elasticsearch 发送数据。
Beats 家族各采集器如下:
采集器 | 采集内容 |
---|---|
Auditbeat | 审计数据 |
Filebeat | 日志文件 |
Heartbeat | 可用性检测 |
Metricbeat | 指标 |
Packetbeat | 网络数据 |
Winlogbeat | Windows 事件日志 |
Beats
可以直接发送数据到ElasticSearch
或通过logstash
,在那里您可以进一步处理和增强数据,然后在Kibana
可视化。
Filebeat
filebat
是一个用于转发和集中日志数据的轻量级shipper
。作为代理安装在服务器上,filebeat
监视指定的日志文件或位置,收集日志事件,并将它们转发给ElasticSearch
或logstash
进行索引。
以下是filebeat
的工作原理:当您启动filebeat
时,它将启动一个或多个输入,这些输入位于您为日志数据指定的位置。对于文件记录所在的每一个日志,filebat
启动一台harvester
。每个harvester
读取一个新内容的日志,并将新的日志数据发送到libbeat
,ibbeat
聚合事件并将聚合的数据发送到filebeat
配置的输出。
2、Logstash
Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的 “存储库” 中。(我们的存储库当然是 Elasticsearch。)
数据往往以各种各样的形式,或分散或集中地存在于很多系统中。 Logstash 支持各种输入选择 ,可以在同一时间从众多常用来源捕捉事件。能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
数据从源传输到存储库的过程中,Logstash 过滤器能够解析各个事件,识别已命名的字段以构建结构,并将它们转换成通用格式,以便更轻松、更快速地分析和实现商业价值。
借助 Pipeline 管理图形界面来管理 Logstash 的部署,您可以轻而易举地治理数据加工管道。此外,此项管理功能也与 Elastic Stack 内置的安全特性无缝集成,用以避免任何意外操作。
3、Elasticsearch
Elasticsearch 是基于 JSON 的分布式搜索和分析引擎,专为实现水平扩展、高可靠性和管理便捷性而设计。
Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,它集中存储您的数据,帮助您发现意料之中以及意料之外的情况。
Elasticsearch 允许执行和合并多种类型的搜索 ( 结构化、非结构化、地理位置、度量指标 )搜索方式随心而变。先从一个简单的问题出发,试试看能够从中发现些什么。
4、Kibana
Kibana 能够以图表的形式呈现数据,并且具有可扩展的用户界面,供您全方位配置和管理 Elastic Stack。
Kibana 核心搭载了一批经典功能:柱状图、线状图、饼图、旭日图,等等。它们充分利用了 Elasticsearch 的聚合功能。
>>ELK的几种常见架构<<
1、All-In-One
在这种架构中,只有一个 Logstash、Elasticsearch 和 Kibana 实例,集中部署于一台服务器。Logstash 通过输入插件从多种数据源(比如日志文件、标准输入 Stdin 等)获取数据,再经过滤插件加工数据,然后经 Elasticsearch 输出插件输出到 Elasticsearch,通过 Kibana 展示。
这种架构非常简单,使用场景也有限。初学者可以搭建这个架构,了解 ELK 如何工作。
2、Logstash 分布式采集
这种架构是对上面架构的扩展,把一个 Logstash 数据搜集节点扩展到多个,分布于多台机器,将解析好的数据发送到 Elasticsearch server 进行存储,最后在 Kibana 查询、生成日志报表等。
这种结构因为需要在各个服务器上部署 Logstash,而它比较消耗 CPU 和内存资源,所以比较适合计算资源丰富的服务器,否则容易造成服务器性能下降,甚至可能导致无法正常工作。
3、Beats 分布式采集
这种架构引入 Beats 作为日志搜集器。目前 Beats 包括四种:
- Packetbeat(搜集网络流量数据);
- Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据);
- Filebeat(搜集文件数据);
- Winlogbeat(搜集 Windows 事件日志数据)
Beats 将搜集到的数据发送到 Logstash,经 Logstash 解析、过滤后,将其发送到 Elasticsearch 存储,并由 Kibana 呈现给用户。
这种架构解决了 Logstash 在各服务器节点上占用系统资源高的问题。相比 Logstash,Beats 所占系统的 CPU 和内存几乎可以忽略不计。另外,Beats 和 Logstash 之间支持 SSL/TLS 加密传输,客户端和服务器双向认证,保证了通信安全。
4、引入消息队列机制的 Logstash 分布式架构
这种架构使用 Logstash 从各个数据源搜集数据,然后经消息队列输出插件输出到消息队列中。目前 Logstash 支持 Kafka、Redis、RabbitMQ 等常见消息队列。然后 Logstash 通过消息队列输入插件从队列中获取数据,分析过滤后经输出插件发送到 Elasticsearch,最后通过 Kibana 展示。
这种架构适合于日志规模比较庞大的情况。但由于 Logstash 日志解析节点和 Elasticsearch 的负荷比较重,可将他们配置为集群模式,以分担负荷。引入消息队列,均衡了网络传输,从而降低了网络闭塞,尤其是丢失数据的可能性,但依然存在 Logstash 占用系统资源过多的问题。
5、引入消息队列机制的 Filebeat + Logstash 分布式架构
Filebeat 已经支持 kafka 作为 ouput,5.2.1 版本的 Logstash 已经支持 Kafka 作为 Input,和上面的架构不同的地方仅在于,把 Logstash 日志搜集发送替换为了 Filebeat。这种架构是当前最为完美的,有极低的客户端采集开销,引入消息队列,均衡了网络传输,从而降低了网络闭塞,尤其是丢失数据的可能性。
接下来我们进行初步的探视,利用测试环境体验下ELK Stack + Filebeat,测试环境我们就不进行 Kafka 的配置了,因为他的存在意义在于提高可靠性。
以上是关于集中式日志分析平台 - ELK Stack - Filebeat 压测的主要内容,如果未能解决你的问题,请参考以下文章
ES 集中式日志分析平台 Elastic Stack(介绍)
集中式日志分析平台 - ELK Stack - Filebeat 压测
集中式日志分析平台 - ELK Stack - Filebeat 的注意事项
集中式日志分析平台 - ELK Stack - 安全解决方案 X-Pack