高斯消元法求特征值
Posted 木卜
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高斯消元法求特征值相关的知识,希望对你有一定的参考价值。
e=sym(‘e‘) E=[1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1] E=e.*E A=[1,-1,1,-4;5,-4,3,12;2,1,1,11;2,-1,7,-1] A=A-E Adet=1 %开始消元过程 for k=1:(length(A)) a=A(k,k) Adet = Adet.*a for i=1:(length(A)) A(k,i)=A(k,i)/a end for i=k+1:(length(A)) c=-A(i,k) for j=1: (length(A)) A(i,j)=A(i,j)+c.*A(k,j) end end end Adet Adet=solve(Adet) Adet=double(Adet) e = e E = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 E = [ e, 0, 0, 0] [ 0, e, 0, 0] [ 0, 0, e, 0] [ 0, 0, 0, e] A = 1 -1 1 -4 5 -4 3 12 2 1 1 11 2 -1 7 -1 A = [ 1 - e, -1, 1, -4] [ 5, - e - 4, 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] Adet = 1 a = 1 - e Adet = 1 - e A = [ 1, -1, 1, -4] [ 5, - e - 4, 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), 1, -4] [ 5, - e - 4, 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), -4] [ 5, - e - 4, 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 5, - e - 4, 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] c = -5 A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 4, 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 2, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] c = -2 A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1, 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 1 - e, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11] [ 2, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 2, -1, 7, - e - 1] c = -2 A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, -1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] a = - e - 5/(e - 1) - 4 Adet = (e - 1)*(e + 5/(e - 1) + 4) A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, - e - 5/(e - 1) - 4, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, 5/(e - 1) + 3, 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), 12 - 20/(e - 1)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] c = 2/(e - 1) - 1 A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 1 - 2/(e - 1), 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, 11 - 8/(e - 1)] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] c = 2/(e - 1) + 1 A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, - 2/(e - 1) - 1, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, 0, 2/(e - 1) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, - e - 8/(e - 1) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] a = 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1 Adet = -(e - 1)*(e + 5/(e - 1) + 4)*(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 2/(e - 1) - e - ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, ((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] c = ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 2/(e - 1) - 7 A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 0, ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) - e - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 0, ((2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7)*(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11))/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) - 8/(e - 1) - e + ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 1] a = ((2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7)*(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11))/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) - 8/(e - 1) - e + ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 1 Adet = (e - 1)*(e + 5/(e - 1) + 4)*(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)*(e + 8/(e - 1) - ((2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7)*(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11))/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) - ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) + 1) A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 0, ((2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7)*(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11))/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) - 8/(e - 1) - e + ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 0, ((2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7)*(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11))/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) - 8/(e - 1) - e + ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 0, ((2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7)*(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11))/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) - 8/(e - 1) - e + ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 1] A = [ 1, 1/(e - 1), -1/(e - 1), 4/(e - 1)] [ 0, 1, -(5/(e - 1) + 3)/(e + 5/(e - 1) + 4), (20/(e - 1) - 12)/(e + 5/(e - 1) + 4)] [ 0, 0, 1, -(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11)/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)] [ 0, 0, 0, 1] Adet = (e - 1)*(e + 5/(e - 1) + 4)*(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1)*(e + 8/(e - 1) - ((2/(e - 1) - ((2/(e - 1) + 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) + 7)*(((2/(e - 1) - 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) - 8/(e - 1) + 11))/(e - 2/(e - 1) + ((2/(e - 1) - 1)*(5/(e - 1) + 3))/(e + 5/(e - 1) + 4) - 1) - ((2/(e - 1) + 1)*(20/(e - 1) - 12))/(e + 5/(e - 1) + 4) + 1) Adet = RootOf(z^4 + 3*z^3 - 62*z^2 - 256*z + 414, z)[1] RootOf(z^4 + 3*z^3 - 62*z^2 - 256*z + 414, z)[2] RootOf(z^4 + 3*z^3 - 62*z^2 - 256*z + 414, z)[3] RootOf(z^4 + 3*z^3 - 62*z^2 - 256*z + 414, z)[4] Adet = 1.2639 + 0.0000i 7.9781 + 0.0000i -6.1210 + 1.8947i -6.1210 - 1.8947i
以上是关于高斯消元法求特征值的主要内容,如果未能解决你的问题,请参考以下文章