ECCV 2016 paper list

Posted alexanderkun

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ECCV 2016 paper list相关的知识,希望对你有一定的参考价值。

摘录ECCV2016部分文章,主要有Human pose esimation,  Human activiity / actions, Face alignment, Face detection & recognition & .. , Hand tracking, Eye, and Others.

    以下为文章及标题(可能有错漏)

   

 

 

Human pose estimation:

[1]Towards Viewpoint Invariant 3DHuman Pose Estimation

     Albert Haque, Boya Peng, Zelun Luo, Alexandre Alahi, Serena Yeung,and Li Fei-Fei

[2]Fast 6D Pose Estimation from aMonocular Image UsingHierarchical Pose Trees

     Yoshinori Konishi, Yuki Hanzawa, Masato Kawade,and Manabu Hashimoto

[3]Keep It SMPL: AutomaticEstimation of 3D Human Pose and Shapefrom a SingleImage

     Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler,Javier Romero, and Michael J. Black

[4] Zoom Better to See Clearer: Human and Object Parsing withHierarchicalAuto-Zoom Net

     Fangting Xia, PengWang, Liang-Chieh Chen, and Alan L. Yuille

[5] A Sequential Approach to 3D Human Pose Estimation: Separationof Localization and Identification of Body Joints

     Ho Yub Jung, YuminSuh, Gyeongsik Moon, and Kyoung Mu Lee

[6]DeeperCut: A Deeper, Stronger,and Faster Multi-person PoseEstimation Model

     Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,Mykhaylo Andriluka, and Bernt Schiele

[7]Human Attribute Recognition byDeep Hierarchical Contexts

     Yining Li, Chen Huang, Chen Change Loy, and Xiaoou Tang

[8]Human Pose Estimation UsingDeep Consensus Voting .

     Ita Lifshitz, Ethan Fetaya, and Shimon Ullman

[9]Human Pose Estimation viaConvolutional Part Heatmap Regression

     Adrian Bulat and Georgios Tzimiropoulos

[10]Stacked Hourglass Networks forHuman Pose Estimation

       Alejandro Newell, Kaiyu Yang, and Jia Deng

[11]Bayesian Image Based 3D PoseEstimation

       Marta Sanzari, Valsamis Ntouskos, and Fiora Pirri

[12]Shape from Selfies: Human BodyShape Estimation Using CCARegression Forests

       Endri Dibra, Cengiz ?ztireli, Remo Ziegler, and Markus Gross

[13]Estimation of Human Body Shapein Motion with Wide Clothing

      Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler,and Stefanie Wuhrer

[14]Chained Predictions UsingConvolutional Neural Networks

       Georgia Gkioxari, Alexander Toshev, and Navdeep Jaitly

 

 

Human activity:

[1]Real-Time RGB-D ActivityPrediction by Soft Regression

     Jian-Fang Hu, Wei-ShiZheng, Lianyang Ma, Gang Wang,and Jianhuang Lai

[2]Learning Models for Actionsand Person-Object Interactions with Transferto QuestionAnswering

     Arun Mallya and Svetlana Lazebnik

[3]RNN Fisher Vectors for ActionRecognition and Image Annotation.

     Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf

[4]Online Human Action DetectionUsing Joint Classification-RegressionRecurrent NeuralNetworks

     Yanghao Li, Cuiling Lan, Junliang Xing, Wenjun Zeng, Chunfeng Yuan,and Jiaying Liu

[5]DAPs: Deep Action Proposalsfor Action Understanding

     Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles,and Bernard Ghanem

[6]Spatio-Temporal LSTM withTrust Gates for 3D HumanAction Recognition

     Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang

[7]Multi-region Two-Stream R-CNNfor Action Detection

     Xiaojiang Peng and Cordelia Schmid

 

Face alignment:

[1]A Recurrent Encoder-DecoderNetwork for Sequential Face Alignment

    Xi Peng, Rogerio S. Feris, Xiaoyu Wang, and Dimitris N. Metaxas

[2]Robust Facial LandmarkDetection via Recurrent Attentive-RefinementNetworks

    Shengtao Xiao, Jiashi Feng, Junliang Xing, Hanjiang Lai,Shuicheng Yan, and Ashraf Kassim

[3]Deep Deformation Network forObject Landmark Localization

    Xiang Yu, Feng Zhou, and ManmohanChandraker

[4]Joint Face Alignment and 3DFace Reconstruction

     Feng Liu, Dan Zeng, Qijun Zhao, and Xiaoming Liu

[5]Robust Face Alignment Using aMixture of Invariant Experts

     Oncel Tuzel, Tim K. Marks, and Salil Tambe

 

Face detection & recognition& …:

[1]MOON: A Mixed Objective Optimization Network for the Recognitionof Facial Attributes

     Ethan M. Rudd, Manuel Günther, and Terrance E. Boult

[2]Supervised Transformer Networkfor Efficient Face Detection

     Dong Chen, Gang Hua,Fang Wen, and Jian Sun

[3]Ultra-Resolving Face Images byDiscriminative Generative Networks

     Xin Yu and Fatih Porikli

[4]Do We Really Need to CollectMillions of Faces for EffectiveFace Recognition?

     Iacopo Masi, Anh Tu?n Tr?n, Tal Hassner,Jatuporn Toy Leksut,and Gérard Medioni

[5]Deep Cascaded Bi-Network forFace Hallucination

     Shizhan Zhu, SifeiLiu, Chen Change Loy, and Xiaoou Tang

[6]Real-Time Facial Segmentationand Performance Capture from RGB Input

    Shunsuke Saito, Tianye Li, and Hao Li

[7]Cascaded Continuous Regressionfor Real-Time Incremental Face Tracking

     Enrique Sánchez-Lozano, Brais Martinez, Georgios Tzimiropoulos,and Michel Valstar

[8]MS-Celeb-1M: A Dataset andBenchmark for Large-ScaleFace Recognition

     Yandong Guo, LeiZhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao

[9]Joint Face RepresentationAdaptation and Clustering in Videos.

     Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang

[10]Grid Loss: Detecting OccludedFaces

      Michael Opitz, Georg Waltner, Georg Poier, Horst Possegger,and Horst Bischof

[11]Face Detection with End-to-EndIntegration of a ConvNet and a 3D Model

      Yunzhu Li, BenyuanSun, Tianfu Wu, and Yizhou Wang

[12]Face Recognition from MultipleStylistic Sketches: Scenarios, Datasets,and Evaluation

      Chunlei Peng,Nannan Wang, Xinbo Gao, and Jie Li

[13]Fast Face Sketch Synthesis viaKD-Tree Search

      Yuqian Zhang,Nannan Wang, Shengchuan Zhang, Jie Li,and Xinbo Gao

 

Eye:

[1]A 3D Morphable Eye RegionModel for Gaze Estimation

    Erroll Wood, Tadas Baltru?aitis, Louis-Philippe Morency,Peter Robinson, and Andreas Bulling

 

Hand:

[1]Real-Time Joint Tracking of aHand Manipulating an Objectfrom RGB-D Input

    Srinath Sridhar, Franziska Mueller, Michael Zollh?fer, Dan Casas,Antti Oulasvirta, and Christian Theobalt

[2]Spatial Attention Deep Netwith Partial PSO for Hierarchical HybridHand PoseEstimation

    Qi Ye, Shanxin Yuan, and Tae-Kyun Kim

[3]Hand Pose Estimation fromLocal Surface Normals

    Chengde Wan, AngelaYao, and Luc Van Gool

 

Others:

[1]DOC: Deep OCclusion Estimationfrom a Single Image.

     Peng Wang and AlanYuille

[2]Convolutional OrientedBoundaries

     Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,and Luc Van Gool

[3]Superpixel ConvolutionalNetworks Using Bilateral Inceptions

     Raghudeep Gadde, VarunJampani, Martin Kiefel, Daniel Kappler,and Peter V.Gehler

[4]SDF-2-SDF: Highly Accurate 3DObject Reconstruction

     Miroslava Slavcheva,Wadim Kehl, Nassir Navab, and Slobodan Ilic

[5]Learning to Hash with BinaryDeep Neural Network

     Thanh-Toan Do,Anh-Dzung Doan, and Ngai-Man Cheung

[6]Going Further with Point PairFeatures

     Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar,and Kurt Konolige

[7]Automatic Attribute Discoverywith Neural Activations

     SirionVittayakorn, Takayuki Umeda, Kazuhiko Murasaki, Kyoko Sudo,Takayuki Okatani, and Kota Yamaguchi

以上是关于ECCV 2016 paper list的主要内容,如果未能解决你的问题,请参考以下文章

深度学习 目标检测算法 SSD 论文简介

paper 154:姿态估计(Hand Pose Estimation)相关总结

SNE-RoadSeg 解读结合表面法向量的路面分割网络(ECCV2020)

2017-2018_OCR_papers汇总

五篇值得阅读的ECCV 2020 图像识别相关论文

五篇值得阅读的ECCV 2020 图像识别相关论文