POJ 2955 Brackets

Posted Silenceneo_xw

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 2955 Brackets相关的知识,希望对你有一定的参考价值。

Brackets

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6622   Accepted: 3558

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

 
 
题目大意:给你一个长度不超过100的括号序列,求最长合法括号子序列的长度。合法的括号序列满足下列条件:
1.空的括号序列是合法的;
2.如果一个括号序列s是合法的,那么(s)和[s]都是合法的;
3.如果两个括号序列a和b都是合法的,那么ab也是合法的;
4.其他的括号序列都是不合法的。
例如:(), [], (()), ()[], ()[()]都是合法的,而(, ], )(, ([)], ([(]都是不合法的。
 
解题思路:一道典型的区间DP模型题目。分析一下问题,可以发现:如果找到一对匹配的括号,例如[xxx]oooo,就把区间分成两部分,一部分是xxx,另一部分是oooo。
设dp[i][j]表示区间[i,j]之间的最长合法括号子序列的长度,那么当i<j时,如果区间[i+1,j]内没有与i匹配的括号,则dp[i][j]=dp[i+1][j];如果存在一个与之匹配的k,那么dp[i][j]=max{dp[i+1][j], dp[i+1][k-1]+dp[k+1][j]+1(i<=k<=j&&i和k是一对匹配的括号)}。因此,我们将整个串长作为区间进行搜索,那么最后2*dp[0][len-1]即为答案,len表示串的长度。详见代码。
 
 
附上AC代码:
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 using namespace std;
 5 const int maxn = 105;
 6 char str[maxn];
 7 int dp[maxn][maxn];
 8 
 9 bool match(char a, char b){
10     return (a==\'(\'&&b==\')\') || (a==\'[\'&&b==\']\');
11 }
12 
13 int dfs(int l, int r){
14     if (l > r)
15         return 0;
16     if (l == r)
17         return dp[l][r] = 0;
18     if (l+1 == r)
19         return dp[l][r] = match(str[l], str[r]);
20     if (dp[l][r] != -1)
21         return dp[l][r];
22     int ans = dfs(l+1, r);
23     for (int i=l; i<=r; ++i)
24         if (match(str[l], str[i]))
25             ans = max(ans, dfs(l+1, i-1)+dfs(i+1, r)+1);
26     return dp[l][r] = ans;
27 }
28 
29 int main(){
30     while (~scanf("%s", str) && str[0]!=\'e\'){
31         memset(dp, -1, sizeof(dp));
32         int len = strlen(str);
33         dfs(0, len-1);
34         printf("%d\\n", 2*dp[0][len-1]);
35     }
36     return 0;
37 }
View Code

 

以上是关于POJ 2955 Brackets的主要内容,如果未能解决你的问题,请参考以下文章

POJ2955 Brackets

POJ 2955 - Brackets - [区间DP]

Brackets POJ - 2955 (区间dp)

POJ 2955 Brackets(区间DP)题解

POJ 2955 Brackets

POJ 2955?Brackets