UVa 1336 Fixing the Great Wall (区间DP)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVa 1336 Fixing the Great Wall (区间DP)相关的知识,希望对你有一定的参考价值。
题意:给定 n 个结点,表示要修复的点,然后机器人每秒以 v 的速度移动,初始位置在 x,然后修复结点时不花费时间,但是如果有的结点暂时没修复,
那么每秒它的费用都会增加 d,修复要花费 c,坐标是 pos,问你最少花费是多少。
析:dp[i][j][k] 表示已经修复了 i-j 区间,并且当前在 k,那么两种方案,向左移动,或者向右移动,最后输出就好了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define print(a) printf("%d\n", (a)) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int pos, cost, det; bool operator < (const Node &p) const{ return pos < p.pos; } }; Node a[maxn]; double sum[maxn], v; double dp[maxn][maxn][2]; double cal(int i, int j, int l, int r){ double t = 1.0 * fabs(a[l].pos-a[r].pos) / v; double ans = sum[i-1] + sum[n+1] - sum[j]; return ans * t; } int solve(){ for(int i = 0; i <= n+1; ++i) for(int j = 0; j <= n+1; ++j) dp[i][j][0] = dp[i][j][1] = inf; int p = lower_bound(a+1, a+n+1, (Node){m, 0, 0}) - a; dp[p][p][0] = dp[p][p][1] = 0.0; for(int i = p; i > 0; --i){ for(int j = p; j <= n+1; ++j){ dp[i-1][j][0] = min(dp[i-1][j][0], dp[i][j][0]+cal(i, j, i, i-1)+a[i-1].cost); dp[i-1][j][0] = min(dp[i-1][j][0], dp[i][j][1]+cal(i, j, j, i-1)+a[i-1].cost); dp[i][j+1][1] = min(dp[i][j+1][1], dp[i][j][0]+cal(i, j, i, j+1)+a[j+1].cost); dp[i][j+1][1] = min(dp[i][j+1][1], dp[i][j][1]+cal(i, j, j, j+1)+a[j+1].cost); } } return min(dp[1][n+1][0], dp[1][n+1][1]); } int main(){ while(scanf("%d %lf %d", &n, &v, &m) == 3 && n+v+m){ for(int i = 1; i <= n; ++i) scanf("%d %d %d", &a[i].pos, &a[i].cost, &a[i].det); a[n+1].pos = m; a[n+1].cost = a[n+1].det = 0; sort(a+1, a+n+2); sum[0] = 0; for(int i = 1; i <= n+1; ++i) sum[i] = sum[i-1] + a[i].det; int ans = solve(); printf("%d\n", ans); } return 0; }
以上是关于UVa 1336 Fixing the Great Wall (区间DP)的主要内容,如果未能解决你的问题,请参考以下文章
UVa 1336 Fixing the Great Wall (区间DP)
UVA10256 The Great Divide(凸包相交)
UVA 10256 The Great Divide (判断凸包相交)