Levenberg-Marquardt 的 MATLAB 代码
Posted 菠菜僵尸
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Levenberg-Marquardt 的 MATLAB 代码相关的知识,希望对你有一定的参考价值。
参考资料:
1,《精通MATLAB最优化计算(第2版)》作者:龚纯 等 的 第9章 9.3 小节 L-M 法
2,《数值分析》 作者:Timothy Sauer 的 第4章 4.4节 非线性最小二乘的 例子
第一本书里头虽然有代码,然而有错误,修正了错误之处
% opti_LM_test1 % 测试了 MATLAB最优化 书中的 L-M 的例子,结果是正确的 clear all;clc;close all; syms t; f = ... [t^2+t-1; 2*t^2-3]; S = transpose(f)*f; f_var = symvar(f); t_init = -5 % 自变量的初始值 %% u = 2 v = 1.5 beta = 0.4 eps = 1.0e-6 x = t_init; x = transpose(x);% 删 jacobian_f = jacobian(f,f_var); tol = 1; %% subs以后居然不是数值,而是符号!还要转换成double类型!!! while tol>eps fxk = double(subs(f,f_var,x)); Sxk = double(subs(S,f_var,x)); % step2: 计算 fxk Sxk delta_fxk = double(subs(jacobian_f,f_var,x)); % step3: 计算 delta_fxk delta_Sxk = transpose(delta_fxk)*fxk; % step4: 计算 delta_Sxk while 1 % step5: 计算Q,并解方程(Q+uI)delta_x = -delta_Sxk Q = transpose(delta_fxk)*delta_fxk; dx = -(Q+u*eye(size(Q)))\delta_Sxk; x1 = x + dx; fxk = double(subs(f,f_var,x1)); Sxk_new = double(subs(S,f_var,x1)); tol = norm(dx); % step6: 计算中止条件 norm(dx)<eps 是否满足,不满足转step 7 if tol<=eps break; end % step7: if Sxk_new < Sxk+beta*transpose(delta_Sxk)*dx u = u/v; break; else u = u*v; continue; end end x = x1; end t = x1 minf = double(subs(S,f_var,t))
测试的结果是正确的。
参考第二本书中的例子把上述算法改成了一个多变量的程序,基本上没什么改动
% opti_LM_test2 % 测试了 数值分析 Timothy Sauer 中 4.4节中的 4.19例 clear all;clc;close all; x1 = -1; y1 = 0; x2 = 1; y2 = 1/2; x3 = 1; y3 = -1/2; R1 = 1; R2 = 1/2; R3 = 1/2; % syms x y; r1 = sqrt( (x-x1)^2 + (y-y1)^2 )-R1; r2 = sqrt( (x-x2)^2 + (y-y2)^2 )-R2; r3 = sqrt( (x-x3)^2 + (y-y3)^2 )-R3; r = ... [r1; r2; r3] % f = r clear r1 r2 r3 R1 R2 R3 x1 x2 x3 y1 y2 y3 x y r; %% S = transpose(f)*f f_var = symvar(f) t_init = [0 0] % 初始值,要给出 u = 2 v = 1.5 beta = 0.4 eps = 1.0e-6 tol = 1 %% x = t_init jacobian_f = jacobian(f,f_var) %% while tol>eps fxk = double(subs(f,f_var,x)); Sxk = double(subs(S,f_var,x)); % step2: 计算 fxk Sxk delta_fxk = double(subs(jacobian_f,f_var,x)); % step3: 计算 delta_fxk delta_Sxk = transpose(delta_fxk)*fxk; % step4: 计算 delta_Sxk while 1 % step5: 计算Q,并解方程(Q+uI)delta_x = -delta_Sxk Q = transpose(delta_fxk)*delta_fxk; dx = -(Q+u*eye(size(Q)))\delta_Sxk; x1 = x + dx‘; % 注意转置 fxk = double(subs(f,f_var,x1)); Sxk_new = double(subs(S,f_var,x1)); tol = norm(dx); % step6: 计算中止条件 norm(dx)<eps 是否满足,不满足转step 7 if tol<=eps break; end % step7: if Sxk_new < Sxk+beta*transpose(delta_Sxk)*dx u = u/v; break; else u = u*v; continue; end end x = x1; end %% format short; opti_var_value = x1 minf = double(subs(S,f_var,opti_var_value))
结果也是正确的
细节和原理以后再补充
以上是关于Levenberg-Marquardt 的 MATLAB 代码的主要内容,如果未能解决你的问题,请参考以下文章
Levenberg-Marquardt迭代(LM算法)-改进Newton法
Levenberg-Marquardt 的 MATLAB 代码
是否可以将 Tensorflow Graphics 的 Levenberg-Marquardt 优化器与 Tensorflow 2.0 模型集成?
如何估计 Encog 使用 Levenberg-Marquardt 算法用特定样本集训练特定网络所需的 RAM 量?
V-rep学习笔记:机器人逆运动学数值解法(Damped Least Squares / Levenberg-Marquardt Method)