Linux学习 : 裸板调试 之 配置UART
Posted sheldon_blogs
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux学习 : 裸板调试 之 配置UART相关的知识,希望对你有一定的参考价值。
1、UART原理说明
发送数据时,CPU将并行数据写入UART,UART按照一定的格式在一根电线上串行发出;接收数据时,UART检测另一根电线上的信号,串行收集然后放在缓冲区中,CPU即可读取UART获得这些数据。UART之间以全双工方式传输数据,最精确的连线方法只有3根电线:TxD用于发送数据,RxD用于接收数据,Gnd用于给双发提供参考电平,连线如下:
UART使用标准的TTL/CMOS逻辑电平(0~5v、0~3.3v、0~2.5v或0~1.8v)来表示数据,高电平表示1,低电平表示0。为了增强数据的抗干扰能力、提高传输长度,通常将TTL/CMOD逻辑电平转换为RS-232逻辑电平,3~12v表示0,-3~-12v表示1.
2、实验平台: s3c2440:
寄存器定义:s3c24xx.h
/* WOTCH DOG register */ #define WTCON (*(volatile unsigned long *)0x53000000) /* SDRAM regisers */ #define MEM_CTL_BASE 0x48000000 #define SDRAM_BASE 0x30000000 /* NAND Flash registers */ #define NFCONF (*(volatile unsigned int *)0x4e000000) #define NFCMD (*(volatile unsigned char *)0x4e000004) #define NFADDR (*(volatile unsigned char *)0x4e000008) #define NFDATA (*(volatile unsigned char *)0x4e00000c) #define NFSTAT (*(volatile unsigned char *)0x4e000010) /*GPIO registers*/ #define GPBCON (*(volatile unsigned long *)0x56000010) #define GPBDAT (*(volatile unsigned long *)0x56000014) #define GPFCON (*(volatile unsigned long *)0x56000050) #define GPFDAT (*(volatile unsigned long *)0x56000054) #define GPFUP (*(volatile unsigned long *)0x56000058) #define GPGCON (*(volatile unsigned long *)0x56000060) #define GPGDAT (*(volatile unsigned long *)0x56000064) #define GPGUP (*(volatile unsigned long *)0x56000068) #define GPHCON (*(volatile unsigned long *)0x56000070) #define GPHDAT (*(volatile unsigned long *)0x56000074) #define GPHUP (*(volatile unsigned long *)0x56000078) /*UART registers*/ #define ULCON0 (*(volatile unsigned long *)0x50000000) #define UCON0 (*(volatile unsigned long *)0x50000004) #define UFCON0 (*(volatile unsigned long *)0x50000008) #define UMCON0 (*(volatile unsigned long *)0x5000000c) #define UTRSTAT0 (*(volatile unsigned long *)0x50000010) #define UTXH0 (*(volatile unsigned char *)0x50000020) #define URXH0 (*(volatile unsigned char *)0x50000024) #define UBRDIV0 (*(volatile unsigned long *)0x50000028) /*interrupt registes*/ #define SRCPND (*(volatile unsigned long *)0x4A000000) #define INTMOD (*(volatile unsigned long *)0x4A000004) #define INTMSK (*(volatile unsigned long *)0x4A000008) #define PRIORITY (*(volatile unsigned long *)0x4A00000c) #define INTPND (*(volatile unsigned long *)0x4A000010) #define INTOFFSET (*(volatile unsigned long *)0x4A000014) #define SUBSRCPND (*(volatile unsigned long *)0x4A000018) #define INTSUBMSK (*(volatile unsigned long *)0x4A00001c) /*external interrupt registers*/ #define EINTMASK (*(volatile unsigned long *)0x560000a4) #define EINTPEND (*(volatile unsigned long *)0x560000a8) /*clock registers*/ #define LOCKTIME (*(volatile unsigned long *)0x4c000000) #define MPLLCON (*(volatile unsigned long *)0x4c000004) #define UPLLCON (*(volatile unsigned long *)0x4c000008) #define CLKCON (*(volatile unsigned long *)0x4c00000c) #define CLKSLOW (*(volatile unsigned long *)0x4c000010) #define CLKDIVN (*(volatile unsigned long *)0x4c000014) /*PWM & Timer registers*/ #define TCFG0 (*(volatile unsigned long *)0x51000000) #define TCFG1 (*(volatile unsigned long *)0x51000004) #define TCON (*(volatile unsigned long *)0x51000008) #define TCNTB0 (*(volatile unsigned long *)0x5100000c) #define TCMPB0 (*(volatile unsigned long *)0x51000010) #define TCNTO0 (*(volatile unsigned long *)0x51000014) #define GSTATUS1 (*(volatile unsigned long *)0x560000B0)
uart使用函数声明:serial.h
void uart0_init(void); void putc(unsigned char c); unsigned char getc(void); int isDigit(unsigned char c); int isLetter(unsigned char c);
uart使用函数实现:serial.c
#include "s3c24xx.h" #include "serial.h" #define TXD0READY (1<<2) #define RXD0READY (1) #define PCLK 50000000 // init.c中的clock_init函数设置PCLK为50MHz #define UART_CLK PCLK // UART0的时钟源设为PCLK #define UART_BAUD_RATE 115200 // 波特率 #define UART_BRD ((UART_CLK / (UART_BAUD_RATE * 16)) - 1) /* * 初始化UART0 * 115200,8N1,无流控 */ void uart0_init(void) { GPHCON |= 0xa0; // GPH2,GPH3用作TXD0,RXD0 GPHUP = 0x0c; // GPH2,GPH3内部上拉 ULCON0 = 0x03; // 8N1(8个数据位,无较验,1个停止位) UCON0 = 0x05; // 查询方式,UART时钟源为PCLK UFCON0 = 0x00; // 不使用FIFO UMCON0 = 0x00; // 不使用流控 UBRDIV0 = UART_BRD; // 波特率为115200 } /* * 发送一个字符 */ void putc(unsigned char c) { /* 等待,直到发送缓冲区中的数据已经全部发送出去 */ while (!(UTRSTAT0 & TXD0READY)); /* 向UTXH0寄存器中写入数据,UART即自动将它发送出去 */ UTXH0 = c; } /* * 接收字符 */ unsigned char getc(void) { /* 等待,直到接收缓冲区中的有数据 */ while (!(UTRSTAT0 & RXD0READY)); /* 直接读取URXH0寄存器,即可获得接收到的数据 */ return URXH0; } /* * 判断一个字符是否数字 */ int isDigit(unsigned char c) { if (c >= ‘0‘ && c <= ‘9‘) return 1; else return 0; } /* * 判断一个字符是否英文字母 */ int isLetter(unsigned char c) { if (c >= ‘a‘ && c <= ‘z‘) return 1; else if (c >= ‘A‘ && c <= ‘Z‘) return 1; else return 0; }
初始化函数:init.c
/* * init.c: 进行一些初始化 */ #include "s3c24xx.h" void disable_watch_dog(void); void clock_init(void); void memsetup(void); void copy_steppingstone_to_sdram(void); /* * 关闭WATCHDOG,否则CPU会不断重启 */ void disable_watch_dog(void) { WTCON = 0; // 关闭WATCHDOG很简单,往这个寄存器写0即可 } #define S3C2410_MPLL_200MHZ ((0x5c<<12)|(0x04<<4)|(0x00)) #define S3C2440_MPLL_200MHZ ((0x5c<<12)|(0x01<<4)|(0x02)) /* * 对于MPLLCON寄存器,[19:12]为MDIV,[9:4]为PDIV,[1:0]为SDIV * 有如下计算公式: * S3C2410: MPLL(FCLK) = (m * Fin)/(p * 2^s) * S3C2440: MPLL(FCLK) = (2 * m * Fin)/(p * 2^s) * 其中: m = MDIV + 8, p = PDIV + 2, s = SDIV * 对于本开发板,Fin = 12MHz * 设置CLKDIVN,令分频比为:FCLK:HCLK:PCLK=1:2:4, * FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */ void clock_init(void) { // LOCKTIME = 0x00ffffff; // 使用默认值即可 CLKDIVN = 0x03; // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1 /* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */ __asm__( "mrc p15, 0, r1, c1, c0, 0\n" /* 读出控制寄存器 */ "orr r1, r1, #0xc0000000\n" /* 设置为“asynchronous bus mode” */ "mcr p15, 0, r1, c1, c0, 0\n" /* 写入控制寄存器 */ ); /* 判断是S3C2410还是S3C2440 */ if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002)) { MPLLCON = S3C2410_MPLL_200MHZ; /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */ } else { MPLLCON = S3C2440_MPLL_200MHZ; /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */ } } /* * 设置存储控制器以使用SDRAM */ void memsetup(void) { volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE; /* 这个函数之所以这样赋值,而不是像前面的实验(比如mmu实验)那样将配置值 * 写在数组中,是因为要生成”位置无关的代码”,使得这个函数可以在被复制到 * SDRAM之前就可以在steppingstone中运行 */ /* 存储控制器13个寄存器的值 */ p[0] = 0x22011110; //BWSCON p[1] = 0x00000700; //BANKCON0 p[2] = 0x00000700; //BANKCON1 p[3] = 0x00000700; //BANKCON2 p[4] = 0x00000700; //BANKCON3 p[5] = 0x00000700; //BANKCON4 p[6] = 0x00000700; //BANKCON5 p[7] = 0x00018005; //BANKCON6 p[8] = 0x00018005; //BANKCON7 /* REFRESH, * HCLK=12MHz: 0x008C07A3, * HCLK=100MHz: 0x008C04F4 */ p[9] = 0x008C04F4; p[10] = 0x000000B1; //BANKSIZE p[11] = 0x00000030; //MRSRB6 p[12] = 0x00000030; //MRSRB7 } void copy_steppingstone_to_sdram(void) { unsigned int *pdwSrc = (unsigned int *)0; unsigned int *pdwDest = (unsigned int *)0x30000000; while (pdwSrc < (unsigned int *)4096) { *pdwDest = *pdwSrc; pdwDest++; pdwSrc++; } }
测试uart代码:main.c
#include "serial.h" int main() { unsigned char c; uart0_init(); // 波特率115200,8N1(8个数据位,无校验位,1个停止位) while(1) { // 从串口接收数据后,判断其是否数字或子母,若是则加1后输出 c = getc(); if (isDigit(c) || isLetter(c)) putc(c+1); } return 0; }
汇编调用代码:head.S
位置无关码使用条件: 1、使用b , bl 指令
2、C语言不使用全局变量或静态变量
@****************************************************************************** @ File:head.S @ 功能:设置SDRAM,将程序复制到SDRAM,然后跳到SDRAM继续执行 @****************************************************************************** .extern main .text .global _start _start: Reset: ldr sp, =4096 @ 设置栈指针,以下都是C函数,调用前需要设好栈 bl disable_watch_dog @ 关闭WATCHDOG,否则CPU会不断重启 @ bl是位置无关码,相当于:PCnew = PC + 偏移 @ PCnew = (4+8) + 0x28 = 0x34 ldr pc, =disable_watch_dog bl clock_init @ 设置MPLL,改变FCLK、HCLK、PCLK bl memsetup @ 设置存储控制器以使用SDRAM bl copy_steppingstone_to_sdram @ 复制代码到SDRAM中 ldr pc, =on_sdram @ 跳到SDRAM中继续执行 on_sdram: ldr sp, =0x34000000 @ 设置栈指针,SDRAM 64M ldr lr, =halt_loop @ 设置返回地址 ldr pc, =main @ 调用main函数 halt_loop: b halt_loop
编译链接脚本:从SDRAM执行
SECTIONS { . = 0x30000000; .text : { *(.text) } .rodata ALIGN(4) : {*(.rodata)} .data ALIGN(4) : { *(.data) } .bss ALIGN(4) : { *(.bss) *(COMMON) } }
Makefile:
objs := head.o init.o serial.o main.o uart.bin: $(objs) arm-linux-ld -Tuart.lds -o uart_elf $^ arm-linux-objcopy -O binary -S uart_elf [email protected] arm-linux-objdump -D -m arm uart_elf > uart.dis %.o:%.c arm-linux-gcc -Wall -O2 -c -o [email protected] $< %.o:%.S arm-linux-gcc -Wall -O2 -c -o [email protected] $< clean: rm -f uart.bin uart_elf uart.dis *.o
以上是关于Linux学习 : 裸板调试 之 配置UART的主要内容,如果未能解决你的问题,请参考以下文章