Linux学习 : 裸板调试 之 使用MMU
Posted sheldon_blogs
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux学习 : 裸板调试 之 使用MMU相关的知识,希望对你有一定的参考价值。
MMU(Memory Management Unit,内存管理单元),操作系统通过使用处理器的MMU功能实现以下:
1)虚拟内存。有了虚拟内存,可以在处理器上运行比实际物理内存大的应用程序。为了使用虚拟内存,操作系统通常要设置一个交换分区(通常是硬盘),通过将不活跃的内存中的数据放入交换分区,操作系统可以腾出其空间来为其它的程序服务。虚拟内存是通过虚拟地址来实现的。
2)内存保护。根据需要对特定的内存区块的访问进行保护,通过这一功能,我们可以将特定的内存块设置成只读、只写或是可同时读写。
实验平台:s3c2440
@************************************************************************* @ File:head.S @ 功能:设置SDRAM,将第二部分代码复制到SDRAM,设置页表,启动MMU, @ 然后跳到SDRAM继续执行 @************************************************************************* .text .global _start _start: ldr sp, =4096 @ 设置栈指针,以下都是C函数,调用前需要设好栈 bl disable_watch_dog @ 关闭WATCHDOG,否则CPU会不断重启 bl memsetup @ 设置存储控制器以使用SDRAM bl copy_2th_to_sdram @ 将第二部分代码复制到SDRAM bl create_page_table @ 设置页表 bl mmu_init @ 启动MMU ldr sp, =0xB4000000 @ 重设栈指针,指向SDRAM顶端(使用虚拟地址) ldr pc, =0xB0004000 @ 跳到SDRAM中继续执行第二部分代码 @ ldr pc, =main halt_loop: b halt_loop
初始化、启动MMU:
/* * init.c: 进行一些初始化,在Steppingstone中运行 * 它和head.S同属第一部分程序,此时MMU未开启,使用物理地址 */ /* WATCHDOG寄存器 */ #define WTCON (*(volatile unsigned long *)0x53000000) /* 存储控制器的寄存器起始地址 */ #define MEM_CTL_BASE 0x48000000 /* * 关闭WATCHDOG,否则CPU会不断重启 */ void disable_watch_dog(void) { WTCON = 0; // 关闭WATCHDOG很简单,往这个寄存器写0即可 } /* * 设置存储控制器以使用SDRAM */ void memsetup(void) { /* SDRAM 13个寄存器的值 */ unsigned long const mem_cfg_val[]={ 0x22011110, //BWSCON 0x00000700, //BANKCON0 0x00000700, //BANKCON1 0x00000700, //BANKCON2 0x00000700, //BANKCON3 0x00000700, //BANKCON4 0x00000700, //BANKCON5 0x00018005, //BANKCON6 0x00018005, //BANKCON7 0x008C07A3, //REFRESH 0x000000B1, //BANKSIZE 0x00000030, //MRSRB6 0x00000030, //MRSRB7 }; int i = 0; volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE; for(; i < 13; i++) p[i] = mem_cfg_val[i]; } /* * 将第二部分代码复制到SDRAM */ void copy_2th_to_sdram(void) { unsigned int *pdwSrc = (unsigned int *)2048; unsigned int *pdwDest = (unsigned int *)0x30004000; while (pdwSrc < (unsigned int *)4096) { *pdwDest = *pdwSrc; pdwDest++; pdwSrc++; } } /* * 设置页表 */ void create_page_table(void) { /* * 用于段描述符的一些宏定义 */ #define MMU_FULL_ACCESS (3 << 10) /* 访问权限 */ #define MMU_DOMAIN (0 << 5) /* 属于哪个域 */ #define MMU_SPECIAL (1 << 4) /* 必须是1 */ #define MMU_CACHEABLE (1 << 3) /* cacheable */ #define MMU_BUFFERABLE (1 << 2) /* bufferable */ #define MMU_SECTION (2) /* 表示这是段描述符 */ #define MMU_SECDESC (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | \ MMU_SECTION) #define MMU_SECDESC_WB (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | \ MMU_CACHEABLE | MMU_BUFFERABLE | MMU_SECTION) #define MMU_SECTION_SIZE 0x00100000 unsigned long virtuladdr, physicaladdr; unsigned long *mmu_tlb_base = (unsigned long *)0x30000000; /* * Steppingstone的起始物理地址为0,第一部分程序的起始运行地址也是0, * 为了在开启MMU后仍能运行第一部分的程序, * 将0~1M的虚拟地址映射到同样的物理地址 */ virtuladdr = 0; physicaladdr = 0; *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) | MMU_SECDESC_WB; /* * 0x56000000是GPIO寄存器的起始物理地址, * GPFCON和GPFDAT这两个寄存器的物理地址0x56000050、0x56000054, * 为了在第二部分程序中能以地址0xA0000050、0xA0000054来操作GPFCON、GPFDAT, * 把从0xA0000000开始的1M虚拟地址空间映射到从0x56000000开始的1M物理地址空间 */ virtuladdr = 0xA0000000; physicaladdr = 0x56000000; *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) | MMU_SECDESC; /* * SDRAM的物理地址范围是0x30000000~0x33FFFFFF, * 将虚拟地址0xB0000000~0xB3FFFFFF映射到物理地址0x30000000~0x33FFFFFF上, * 总共64M,涉及64个段描述符 */ virtuladdr = 0xB0000000; physicaladdr = 0x30000000; while (virtuladdr < 0xB4000000) { *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) | MMU_SECDESC_WB; virtuladdr += 0x100000; physicaladdr += 0x100000; } } /* * 启动MMU */ void mmu_init(void) { unsigned long ttb = 0x30000000; // ARM休系架构与编程 // 嵌入汇编:LINUX内核完全注释 __asm__( "mov r0, #0\n" "mcr p15, 0, r0, c7, c7, 0\n" /* 使无效ICaches和DCaches */ "mcr p15, 0, r0, c7, c10, 4\n" /* drain write buffer on v4 */ "mcr p15, 0, r0, c8, c7, 0\n" /* 使无效指令、数据TLB */ "mov r4, %0\n" /* r4 = 页表基址 */ "mcr p15, 0, r4, c2, c0, 0\n" /* 设置页表基址寄存器 */ "mvn r0, #0\n" "mcr p15, 0, r0, c3, c0, 0\n" /* 域访问控制寄存器设为0xFFFFFFFF, * 不进行权限检查 */ /* * 对于控制寄存器,先读出其值,在这基础上修改感兴趣的位, * 然后再写入 */ "mrc p15, 0, r0, c1, c0, 0\n" /* 读出控制寄存器的值 */ /* 控制寄存器的低16位含义为:.RVI ..RS B... .CAM * R : 表示换出Cache中的条目时使用的算法, * 0 = Random replacement;1 = Round robin replacement * V : 表示异常向量表所在的位置, * 0 = Low addresses = 0x00000000;1 = High addresses = 0xFFFF0000 * I : 0 = 关闭ICaches;1 = 开启ICaches * R、S : 用来与页表中的描述符一起确定内存的访问权限 * B : 0 = CPU为小字节序;1 = CPU为大字节序 * C : 0 = 关闭DCaches;1 = 开启DCaches * A : 0 = 数据访问时不进行地址对齐检查;1 = 数据访问时进行地址对齐检查 * M : 0 = 关闭MMU;1 = 开启MMU */ /* * 先清除不需要的位,往下若需要则重新设置它们 */ /* .RVI ..RS B... .CAM */ "bic r0, r0, #0x3000\n" /* ..11 .... .... .... 清除V、I位 */ "bic r0, r0, #0x0300\n" /* .... ..11 .... .... 清除R、S位 */ "bic r0, r0, #0x0087\n" /* .... .... 1... .111 清除B/C/A/M */ /* * 设置需要的位 */ "orr r0, r0, #0x0002\n" /* .... .... .... ..1. 开启对齐检查 */ "orr r0, r0, #0x0004\n" /* .... .... .... .1.. 开启DCaches */ "orr r0, r0, #0x1000\n" /* ...1 .... .... .... 开启ICaches */ "orr r0, r0, #0x0001\n" /* .... .... .... ...1 使能MMU */ "mcr p15, 0, r0, c1, c0, 0\n" /* 将修改的值写入控制寄存器 */ : /* 无输出 */ : "r" (ttb) ); }
led测试C代码:
/* * leds.c: 循环点亮4个LED * 属于第二部分程序,此时MMU已开启,使用虚拟地址 */ #define GPFCON (*(volatile unsigned long *)0xA0000050) // 物理地址0x56000050 #define GPFDAT (*(volatile unsigned long *)0xA0000054) // 物理地址0x56000054 #define GPF4_out (1<<(4*2)) #define GPF5_out (1<<(5*2)) #define GPF6_out (1<<(6*2)) /* * wait函数加上“static inline”是有原因的, * 这样可以使得编译leds.c时,wait嵌入main中,编译结果中只有main一个函数。 * 于是在连接时,main函数的地址就是由连接文件指定的运行时装载地址。 * 而连接文件mmu.lds中,指定了leds.o的运行时装载地址为0xB4004000, * 这样,head.S中的“ldr pc, =0xB4004000”就是跳去执行main函数。 */ static inline void wait(unsigned long dly) { for(; dly > 0; dly--); } int main(void) { unsigned long i = 0; GPFCON = GPF4_out|GPF5_out|GPF6_out; // 将LED1,2,4对应的GPF4/5/6三个引脚设为输出 while(1){ wait(30000); GPFDAT = (~(i<<4)); // 根据i的值,点亮LED1,2,4 if(++i == 8) i = 0; } return 0; }
Makefile:
objs := head.o init.o leds.o mmu.bin : $(objs) arm-linux-ld -Tmmu.lds -o mmu_elf $^ arm-linux-objcopy -O binary -S mmu_elf [email protected] arm-linux-objdump -D -m arm mmu_elf > mmu.dis %.o:%.c arm-linux-gcc -Wall -O2 -c -o [email protected] $< %.o:%.S arm-linux-gcc -Wall -O2 -c -o [email protected] $< clean: rm -f mmu.bin mmu_elf mmu.dis *.o
特殊链接:
SECTIONS { firtst 0x00000000 : { head.o init.o } second 0xB0004000 : AT(2048) { leds.o } }
以上是关于Linux学习 : 裸板调试 之 使用MMU的主要内容,如果未能解决你的问题,请参考以下文章