UVa1354 Mobile Computing (枚举二叉树)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVa1354 Mobile Computing (枚举二叉树)相关的知识,希望对你有一定的参考价值。
链接:http://acm.hust.edu.cn/vjudge/problem/41537
分析:二进制法枚举二叉树。用n位二进制位代表n个元素,第i位为1代表集合中包含第i个元素,否则不包含。从右往左依次表示第0,1,2,3...n-1号元素,sum表示包含集合中的元素时的总重量,tree[subset]表示包含集合中的元素时天平合法的L和R,vis表示当前子集是否已经被枚举过避免重复枚举。然后就是dfs递归枚举子集,枚举左子树的集合剩下的就是右子树,然后继续递归枚举,枚举到叶子结点或vis为true时终止且叶子结点的L和R为0,然后循环遍历subset的left和right,将subset下合法的L和R存到tree[subset]中。最后找到tree[root]中最大的L+R就是答案。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 using namespace std; 5 6 struct Tree { 7 double L, R; 8 Tree():L(0),R(0) {} 9 }; 10 11 const int maxn = 6; 12 13 int n, vis[1 << maxn]; 14 double r, w[maxn], sum[1 << maxn]; 15 vector<Tree> tree[1 << maxn]; 16 17 void dfs(int subset) { 18 if(vis[subset]) return; 19 vis[subset] = true; 20 bool have_children = false; 21 for (int left = (subset - 1) & subset; left; left = (left - 1) & subset) { 22 have_children = true; 23 int right = subset ^ left; 24 double d1 = sum[right] / sum[subset]; 25 double d2 = sum[left] / sum[subset]; 26 dfs(left); dfs(right); 27 for(int i = 0; i < tree[left].size(); i++) 28 for(int j = 0; j < tree[right].size(); j++) { 29 Tree t; 30 t.L = max(tree[left][i].L + d1, tree[right][j].L - d2); 31 t.R = max(tree[right][j].R + d2, tree[left][i].R - d1); 32 if(t.L + t.R < r) tree[subset].push_back(t); 33 } 34 } 35 if(!have_children) tree[subset].push_back(Tree()); 36 } 37 38 int main() { 39 int T; 40 scanf("%d", &T); 41 while(T--) { 42 scanf("%lf%d", &r, &n); 43 for(int i = 0; i < n; i++) scanf("%lf", &w[i]); 44 for(int i = 0; i < (1<<n); i++) { 45 sum[i] = 0; 46 tree[i].clear(); 47 for(int j = 0; j < n; j++) 48 if(i & (1 << j)) sum[i] += w[j]; 49 } 50 int root = (1 << n) - 1; 51 memset(vis, 0, sizeof(vis)); 52 dfs(root); 53 double ans = -1; 54 for(int i = 0; i < tree[root].size(); i++) 55 ans = max(ans, tree[root][i].L + tree[root][i].R); 56 printf("%.10lf\n", ans); 57 } 58 return 0; 59 }
以上是关于UVa1354 Mobile Computing (枚举二叉树)的主要内容,如果未能解决你的问题,请参考以下文章
UVa 1354 Mobile Computing | GOJ 1320 不加修饰的天平问题