poj3243-Clever Y高次同余方程-拓展BabyStepGiantStep
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj3243-Clever Y高次同余方程-拓展BabyStepGiantStep相关的知识,希望对你有一定的参考价值。
http://poj.org/problem?id=3243
题意:给定X,Z,K,求一个最小的Y满足XY mod Z = K。
题解:BSGS的拓展版本(因为X和Z不一定互质)。这道题挺坑的,如果K>=Z不是输出无解而是让K%=Z。
算是BSGS的模板题,我打了两种版本,就是二分查找和hash。对比两次提交来看,二分省空间,耗时间;Hash省时间,耗空间。
1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 #include<cmath> 6 #include<algorithm> 7 using namespace std; 8 9 typedef long long LL; 10 const int N=40000; 11 bool bk; 12 LL X,Z,K,a,b,c,m,k,sum,am,bl; 13 struct node{ 14 LL d,id; 15 }bit[N],p[N]; 16 17 bool cmp(node x,node y){ 18 if(x.d!=y.d) return x.d<y.d; 19 return x.id<y.id; 20 } 21 22 LL gcd(LL u,LL v) 23 { 24 if(v==0) return u; 25 return gcd(v,u%v); 26 } 27 28 LL find(LL x) 29 { 30 int l=0,r=bl; 31 while(l<=r) 32 { 33 int mid=(l+r)>>1; 34 if(bit[mid].d==x) return bit[mid].id; 35 if(bit[mid].d>x) r=mid-1; 36 if(bit[mid].d<x) l=mid+1; 37 } 38 return -1; 39 } 40 41 void exgcd(LL u,LL v,LL &x,LL &y) 42 { 43 if(v==0) {x=1,y=0;return ;} 44 LL tx,ty; 45 exgcd(v,u%v,tx,ty); 46 x=ty;y=tx-(u/v)*ty; 47 return; 48 } 49 50 LL BSGS() 51 { 52 LL t,g,x,y,pm; 53 a=X;b=K;c=Z;k=1;sum=0;bk=1;bl=0;t=1%c; 54 for(int i=0;i<=100;i++){//避免a的负数次方 55 if(t==b) return i; 56 t=t*a%c; 57 } 58 while((g=gcd(X,c))!=1) 59 { 60 k=(k*X/g)%c;//k记得要mod,否则溢出 61 c/=g; 62 if(b%g) return -1; 63 b/=g; 64 sum++; 65 } 66 m=(LL)(ceil((double)sqrt((double)c)));//要约分之后再求m 67 p[0].d=k%c; 68 p[0].id=0; 69 pm=1;//pm是不用*k的 70 for(int i=1;i<=m;i++) 71 p[i].d=p[i-1].d*a%c,pm=pm*a%c,p[i].id=i; 72 sort(p,p+1+m,cmp); 73 bit[0]=p[0];bl=0; 74 for(int i=1;i<=m;i++) 75 { 76 if(p[i].d!=p[i-1].d) bit[++bl]=p[i]; 77 } 78 exgcd(pm,c,x,y); 79 am=(x%c+c);//避免am=0 80 81 t=b; 82 x=find(b); 83 if(x!=-1) return x; 84 for(int i=1;i<=bl;i++) 85 { 86 t*=am;t%=c; 87 x=find(t); 88 if(x!=-1) 89 return i*m+x; 90 } 91 return -1; 92 } 93 94 int main() 95 { 96 // freopen("a.in","r",stdin); 97 // freopen("a.out","w",stdout); 98 while(1) 99 { 100 scanf("%I64d%I64d%I64d",&X,&Z,&K); 101 if(!X && !Z && !K) return 0; 102 K%=Z; 103 LL ans=BSGS(); 104 if(ans!=-1) printf("%I64d\n",ans+sum); 105 else printf("No Solution\n"); 106 } 107 return 0; 108 }
1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 #include<cmath> 6 #include<algorithm> 7 using namespace std; 8 9 typedef long long LL; 10 const LL N=40000,Max=(1<<16)-1; 11 bool bk; 12 LL X,Z,K,len; 13 bool vis[70000]; 14 struct node{ 15 LL d,id,next; 16 }hash[2*Max]; 17 18 int exgcd(LL a,LL b,LL &x,LL &y) 19 { 20 if(b==0) {x=1,y=0;return a;} 21 LL tx,ty; 22 LL d=exgcd(b,a%b,tx,ty); 23 x=ty;y=tx-(a/b)*ty; 24 return d; 25 } 26 27 void ins(LL d,LL id) 28 { 29 LL t=d&Max; 30 if(!vis[t]) { 31 vis[t]=1; 32 hash[t].d=d,hash[t].id=id,hash[t].next=-1; 33 return ; 34 } 35 for(;hash[t].next!=-1;t=hash[t].next))//注意是hash[t].next!=-1 36 { 37 if(hash[t].d==d) return; 38 } 39 hash[t].next=++len; 40 hash[len].d=d;hash[len].id=id;hash[len].next=-1; 41 } 42 43 LL find(LL d) 44 { 45 LL t=d&Max; 46 if(!vis[t]) return -1; 47 for(;t!=-1;t=hash[t].next) 48 { 49 if(hash[t].d==d) return hash[t].id; 50 } 51 return -1; 52 } 53 54 LL BSGS() 55 { 56 LL t,g,x,y,pm,a,b,c,m,k,sum,am; 57 a=X;b=K;c=Z;k=1;sum=0;t=1%c; 58 for(int i=0;i<=100;i++){ 59 if(t==b) return i; 60 t=t*a%c; 61 } 62 while((g=exgcd(X,c,x,y))!=1) 63 { 64 k=(k*X/g)%c; 65 c/=g; 66 if(b%g) return -1; 67 b/=g; 68 sum++; 69 } 70 m=(LL)(ceil((double)sqrt((double)c))); 71 ins(k,0); 72 t=k;pm=1; 73 for(int i=1;i<=m;i++) 74 { 75 t=t*a%c,pm=pm*a%c; 76 ins(t,i); 77 } 78 exgcd(pm,c,x,y); 79 am=x%c+c; 80 t=b; 81 for(int i=0;i<=m;i++) 82 { 83 x=find(t); 84 if(x!=-1) return i*m+x+sum; 85 t=t*am%c; 86 } 87 return -1; 88 } 89 90 int main() 91 { 92 // freopen("a.in","r",stdin); 93 // freopen("b.out","w",stdout); 94 while(1) 95 { 96 scanf("%I64d%I64d%I64d",&X,&Z,&K); 97 if(!X && !Z && !K) return 0; 98 K%=Z;len=Max; 99 memset(vis,0,sizeof(vis)); 100 LL ans=BSGS(); 101 if(ans!=-1) printf("%I64d\n",ans); 102 else printf("No Solution\n"); 103 } 104 return 0; 105 }
以上是关于poj3243-Clever Y高次同余方程-拓展BabyStepGiantStep的主要内容,如果未能解决你的问题,请参考以下文章