bzoj1784: [Usaco2010 Jan]island
Posted zhenglier
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj1784: [Usaco2010 Jan]island相关的知识,希望对你有一定的参考价值。
现在居然出现一道题只有\(pascal\)题解没有\(C++\)题解的情况,小蒟蒻要打破它。
思维题:分类讨论
回归正题,此题十分考验思维,首先我们要考虑如何把不会走的地方给填上,使最后只用求一遍这个图的周长即可。考虑目标点的几种情况:
\(0.\)当前点周围有三个\(A\)或四个\(A\)时:这个点肯定不会走到,直接用\(A\)填上。
\(1.\)当前点夹在两个点中间,无法判断这个点被填上后是否会让两边出现独立的\(x\),所以跳过该点,之后如果某一边被填满,会导致这个点被重新搜到,那时再考虑。
\(2.\)当前点被两个相邻的\(A\)夹在一起,且当前点填上时周围八格没有任何\(x\),那么直接填上。
\(3.\)当前点被两个相邻的\(A\)夹在一起,且当前点填上时周围八格有\(x\)那么这个点肯定会被经过,因为无论往外怎么伸展,最后必须从这里过去以绕开那个\(x\)。
\(4.\)当前点周围有一个\(A\)或没有\(A\),那么这个点先不管,等会也可能再次搜到。
复杂度证明:因为每个点只会有一次变成\(A\)然后向外搜索,所以复杂度为\(O(nm)\)
对于处理出来的图,我们只用判断每个点会被经过几次就行了:每个点经过的次数等于这个点周围\(八格\)的连续\(A\)段数。
最后上神奇的代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
const int dx[]=0,1,0,-1;
const int dy[]=1,0,-1,0;
int n,m;
char mp[N][N];
void dfs(int x,int y)
int cnt=0;
int u[5];
for(int i=0;i<4;++i)
int nx=x+dx[i],ny=y+dy[i];
if(mp[nx][ny]=='A')
u[++cnt]=i;
if(cnt==2)
if(u[2]-u[1]==2)return;
if(mp[x-dx[u[1]]-dx[u[2]]][y-dy[u[1]]-dy[u[2]]]!='.')return;
if(cnt>1)
mp[x][y]='A';
for(int i=0;i<4;++i)
int nx=x+dx[i],ny=y+dy[i];
if(nx>1&&nx<n&&ny>1&&ny<m&&mp[nx][ny]=='.')
dfs(nx,ny);
int main()
cin>>n>>m;
for(int i=1;i<=n;++i)
scanf("%s",mp[i]+1);
for(int i=2;i<n;++i)
for(int j=2;j<m;++j)
if(mp[i][j]=='.')dfs(i,j);
int ans=0;
for(int x=1;x<=n;++x)
for(int y=1;y<=m;++y)
int js=0;
if(mp[x][y]=='.')
int u[5],cnt=0;
for(int i=0;i<4;++i)
int nx=x+dx[i],ny=y+dy[i];
if(mp[nx][ny]=='A')u[++cnt]=i;
if(cnt==1)
js=1;
else if(cnt==2&&abs(u[2]-u[1])==2)
js=2;
else if(cnt==2)js=1;
for(int i=0;i<4;++i)
int nx=x+dx[i],ny=y+dy[i];
if(mp[nx][ny]!='A')
nx=x+dx[(i+1)%4],ny=y+dy[(i+1)%4];
if(mp[nx][ny]!='A')
nx=x+dx[i]+dx[(i+1)%4],ny=y+dy[i]+dy[(i+1)%4];
if(mp[nx][ny]=='A')
js++;
ans+=js;
cout<<ans<<endl;
以上是关于bzoj1784: [Usaco2010 Jan]island的主要内容,如果未能解决你的问题,请参考以下文章
bzoj2021[Usaco2010 Jan]Cheese Towers*
BZOJ1783: [Usaco2010 Jan]Taking Turns
BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心
BZOJ 2020 [Usaco2010 Jan]Buying Feed,II:贪心定义价值