P4168 [Violet]蒲公英 分块

Posted jackpei

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P4168 [Violet]蒲公英 分块相关的知识,希望对你有一定的参考价值。

这道题算是好好写了。写了三种方法。

有一个好像是$qwq$$N\sqrt(N)$的方法,,但是恳请大佬们帮我看看为什么这么慢$qwq$(后面的第三种)

注:$pos[i]$表示$i$属于第$pos[i]$块。


第一种是统计所有可能的块组成的区间中(第i块到第j块),每个数出现的次数,记做$f[i][j][k]$,和所有可能的块组成的区间的答案,记做$h[i][j]$。

然后每次先把整块的答案作为初始答案,然后对于散块中的每个值$vl$,暴力修改对应的$f[i][j][vl]$,更新答案。

当块长取$N^\frac23$,时间复杂度$O(N^\frac53)$级。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ull unsigned long long
#define ll long long
#define R register int
#define pause (for(R i=1;i<=10000000000;++i))
#define OUT freopen("out.out","w",stdout);
using namespace std;
namespace Fread 
    static char B[1<<15],*S=B,*D=B;
    #define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
    inline int g() 
        R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch==-?-1:fix;
        do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
     inline bool isempty(const char& ch) return ch<=36||ch>=127;
    inline void gs(char* s) register char ch; while(isempty(ch=getchar())); do *s++=ch; while(!isempty(ch=getchar()));
using Fread::g; using Fread::gs;
const int N=40010,M=37; int n,m,tot,T,lst;
int f[M][M][N],h[M][M],vl[N],a[N],b[N],pos[N];
inline void PRE()  R mx=0,ans=0;
    for(R i=1;i<=n;++i) pos[i]=(i-1)/T+1;
    for(R j=1,L=pos[n];j<=L;++j,mx=0,ans=0) for(R t=j;t<=L;++t) 
        memcpy(f[j][t],f[j][t-1],sizeof(f[j][t-1]));
        for(R i=(t-1)*T+1,LL=min(t*T,n);i<=LL;++i) ++f[j][t][a[i]];
        for(R i=tot;i;--i) if(f[j][t][i]>=mx) mx=f[j][t][i],ans=i;
        h[j][t]=ans;
    

signed main() 
#ifdef JACK
    freopen("NOIPAK++.in","r",stdin);
    OUT;
#endif
    n=g(),m=g(),T=n/pow(n,1.0/3);
    for(R i=1;i<=n;++i) a[i]=g(); memcpy(b,a,sizeof(a));
    sort(b+1,b+n+1); tot=unique(b+1,b+n+1)-b-1;
    for(R i=1;i<=n;++i) a[i]=lower_bound(b+1,b+tot+1,a[i])-b;
    memcpy(vl,b,sizeof(int)*(tot+1)); PRE();
    for(R i=1,l,r;i<=m;++i)  R mx=0,ans=0;
        l=(g()+lst-1)%n+1,r=(g()+lst-1)%n+1; l>r?swap(l,r):(void)0;
        R p=pos[l]+1,q=pos[r]-1; ans=h[p][q],mx=f[p][q][ans];
        if(pos[l]==pos[r])  
            for(R i=l;i<=r;++i)  ++f[p][q][a[i]];
                if(f[p][q][a[i]]>mx||(f[p][q][a[i]]==mx&&a[i]<ans))    mx=f[p][q][a[i]],ans=a[i];
             for(R i=l;i<=r;++i) --f[p][q][a[i]];
         else  ans=h[p][q],mx=f[p][q][ans];
            for(R i=l,L=pos[l]*T;i<=L;++i)  ++f[p][q][a[i]];
                if(f[p][q][a[i]]>mx||(f[p][q][a[i]]==mx&&a[i]<ans))    mx=f[p][q][a[i]],ans=a[i];
             for(R i=(pos[r]-1)*T+1;i<=r;++i)  ++f[p][q][a[i]];
                if(f[p][q][a[i]]>mx||(f[p][q][a[i]]==mx&&a[i]<ans))    mx=f[p][q][a[i]],ans=a[i];
             for(R i=l,L=pos[l]*T;i<=L;++i) --f[p][q][a[i]];
            for(R i=(pos[r]-1)*T+1;i<=r;++i) --f[p][q][a[i]];
         printf("%d\n",lst=vl[ans]); 
    

第二种是预处理出所有可能的块组成的区间中(第$i$块到第$j$块)的答案$f[i][j]$,并且拿一个$vector$存每个数$vl$出现的位置$s[vl][1...n]$。

答案初始化为整块的答案,然后对于散块中的每个数$vl$,在$s[vl]$中二分出$[l,r]$的最小和最大的位置的下标,相减就是$[l,r]$有多少个$vl$,然后更新答案。

当块长取$\sqrt\fracNlogN$,时间复杂度$O(N\sqrtNlogN)$。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ull unsigned long long
#define ll long long
#define R register int
#define pause (for(R i=1;i<=10000000000;++i))
#define OUT freopen("out.out","w",stdout);
using namespace std;
namespace Fread 
    static char B[1<<15],*S=B,*D=B;
    #define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
    inline int g() 
        R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch==-?-1:fix;
        do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
     inline bool isempty(const char& ch) return ch<=36||ch>=127;
    inline void gs(char* s) register char ch; while(isempty(ch=getchar())); do *s++=ch; while(!isempty(ch=getchar()));
using Fread::g; using Fread::gs;
map<int,int> mp;
const int N=40010; int n,m,T,tot,lst;
vector<int> s[N];
#define pb push_back
int f[10010][10010],cnt[N],p[N],pos[N],a[N],b[N],vl[N];
inline void PRE(int p)  R ans=0,mx=0; memset(cnt,0,sizeof(cnt)); 
    for(R t=p,lim=pos[n];t<=lim;++t) 
        for(R i=(t-1)*T+1,lim=min(n,t*T);i<=lim;++i) 
            if(++cnt[a[i]]>mx||(cnt[a[i]]==mx&&a[i]<ans)) mx=cnt[a[i]],ans=a[i];
         f[p][t]=ans;
    

inline int calc(int l,int r,int x) return upper_bound(s[x].begin(),s[x].end(),r)-lower_bound(s[x].begin(),s[x].end(),l);
inline int solve(int l,int r)  R mx=0,ret=0; 
    if(pos[l]==pos[r])  memset(cnt,0,sizeof(cnt)); 
        for(R i=l;i<=r;++i) if(++cnt[a[i]]>mx||(cnt[a[i]]==mx&&a[i]<ret)) ret=a[i],mx=cnt[a[i]];
     else  ret=f[pos[l]+1][pos[r]-1],mx=calc(l,r,ret);
        for(R i=l,lim=pos[l]*T;i<=lim;++i)  R t=calc(l,r,a[i]);
            if(t>mx||(t==mx&&a[i]<ret)) ret=a[i],mx=t;
         for(R i=(pos[r]-1)*T+1;i<=r;++i)  R t=calc(l,r,a[i]);
            if(t>mx||(t==mx&&a[i]<ret)) ret=a[i],mx=t;
        
     
    return ret;

signed main() 
#ifdef JACK
    freopen("NOIPAK++.in","r",stdin);
    OUT;
#endif
    n=g(),m=g();//,T=n/sqrt(n*log2(n));
    T=qpow(n,1.0/4);
    for(R i=1;i<=n;++i) a[i]=g();
    memcpy(b,a,sizeof(a)); sort(b+1,b+n+1);
    tot=unique(b+1,b+n+1)-b-1; memcpy(vl,b,sizeof(int)*(tot+1));
    for(R i=1;i<=n;++i) a[i]=lower_bound(b+1,b+tot+1,a[i])-b,s[a[i]].pb(i);
    for(R i=1;i<=n;++i) pos[i]=(i-1)/T+1;
    for(R i=1;i<=pos[n];++i) PRE(i);
    for(R i=1,l,r;i<=m;++i) 
        l=(g()+lst-1)%n+1,r=(g()+lst-1)%n+1; l>r?swap(l,r):(void)0;
        printf("%d\n",lst=vl[solve(l,r)]);
    

第三种按理说是复杂度最优秀的,但是跑的不是很快$qwq$。

同第二种,预处理出所有可能的块组成的区间中(第i块到第j块)的答案$f[i][j]$,并且拿一个$vector$存每个数$vl$出现的位置$s[vl][1...n]$。

然后预处理$a[i]$是整个数列中的第几个$a[i]$,出第$1$到第$i$块中最靠后的$vl$是第几个$vl$,记为$d[i][vl]$,预处理出第$n$块到第$i$块中最靠前的$vl$是第几个$vl$,记为$h[i][vl]$。

对于左边散块中的$vl$,查一下$d[pos[r]-1][vl]$,和右边散块中是否有更靠后的$vl$(可以事先用一个数组存起来),然后可以求出这个区间有多少个$vl$(每一个$vl$是第几个$vl$已经知道了),更新答案。

当块长取$\sqrtn$时,时间复杂度为O(N\sqrtN)级(不知道推没推错)。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ull unsigned long long
#define ll long long
#define R register int
#define pause (for(R i=1;i<=10000000000;++i))
#define OUT freopen("out.out","w",stdout);
using namespace std;
namespace Fread 
    static char B[1<<15],*S=B,*D=B;
    #define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
    inline int g() 
        R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch==-?-1:fix;
        do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
     inline bool isempty(const char& ch) return ch<=36||ch>=127;
    inline void gs(char* s) register char ch; while(isempty(ch=getchar())); do *s++=ch; while(!isempty(ch=getchar()));
using Fread::g; using Fread::gs;
const int N=40010,M=1000; int n,m,T,tot,lst;
vector<int> s[N];
#define pb push_back
int f[M][M],cnt[N],P[N],pos[N],a[N],b[N],vl[N],h[M][N],d[M][N],c[M][M];
inline void PRE(int p)  R ans=0,mx=0; memset(cnt,0,sizeof(cnt)); 
    for(R t=p,lim=pos[n];t<=lim;++t) 
        for(R i=(t-1)*T+1,lim=min(n,t*T);i<=lim;++i) 
            if(++cnt[a[i]]>mx||(cnt[a[i]]==mx&&a[i]<ans)) mx=cnt[a[i]],ans=a[i];
         f[p][t]=ans,c[p][t]=mx;
    

inline int solve(int l,int r)  R mx=0,ret=0,p=pos[l]+1,q=pos[r]-1; 
    if(pos[l]==pos[r])  memset(cnt,0,sizeof(cnt)); 
        for(R i=l;i<=r;++i) if(++cnt[a[i]]>mx||(cnt[a[i]]==mx&&a[i]<ret)) ret=a[i],mx=cnt[a[i]];
     else  ret=f[p][q],mx=c[p][q]; memset(cnt,0x3f,sizeof(cnt));
        for(R i=l,L=pos[l]*T;i<=L;++i) if(cnt[a[i]]==0x3f3f3f3f) cnt[a[i]]=P[i];
        for(R i=q*T+1;i<=r;++i) 
            R tmp=P[i]+1-min(cnt[a[i]],h[p][a[i]]);
            if(tmp>mx||(tmp==mx&&a[i]<ret)) ret=a[i],mx=tmp;
            cnt[a[i]]=P[i];
         
        for(R i=l,L=pos[l]*T;i<=L;++i) 
            R tmp=max((cnt[a[i]]==0x3f3f3f3f?0:cnt[a[i]]),d[q][a[i]])-P[i]+1;
            if(tmp>mx||(tmp==mx&&a[i]<ret)) ret=a[i],mx=tmp;
         
     return ret;

signed main() 
#ifdef JACK
    freopen("NOIPAK++.in","r",stdin);
    OUT;
#endif
    n=g(),m=g(); T=pow(n,1/2.3);//好像更小一点更快(也不是越小越快)
    for(R i=1;i<=n;++i) a[i]=g();
    memcpy(b,a,sizeof(a)); sort(b+1,b+n+1);
    tot=unique(b+1,b+n+1)-b-1; memcpy(vl,b,sizeof(int)*(tot+1));
    for(R i=1;i<=n;++i) a[i]=lower_bound(b+1,b+tot+1,a[i])-b,s[a[i]].pb(i);
    for(R i=1;i<=n;++i) pos[i]=(i-1)/T+1; for(R i=1;i<=n;++i) P[i]=++cnt[a[i]]; 
    memset(cnt,0,sizeof(cnt)); memset(h[pos[n]+1],0x3f,sizeof(h[pos[n]+1]));
    for(R t=pos[n];t;--t)  memcpy(h[t],h[t+1],sizeof(h[t+1]));
        for(R i=min(n,t*T);i>(t-1)*T;--i) h[t][a[i]]=P[i];
     for(R t=1;t<=pos[n];++t)  memcpy(d[t],d[t-1],sizeof(d[t-1]));
        for(R i=(t-1)*T+1,L=t*T;i<=L;++i) d[t][a[i]]=P[i];
     for(R i=1;i<=pos[n];++i) PRE(i); 
    for(R i=1,l,r;i<=m;++i) 
        l=(g()+lst-1)%n+1,r=(g()+lst-1)%n+1; l>r?swap(l,r):(void)0;
        printf("%d\n",lst=vl[solve(l,r)]);
    

2019.06.28

 

以上是关于P4168 [Violet]蒲公英 分块的主要内容,如果未能解决你的问题,请参考以下文章

P4168 [Violet]蒲公英 分块

Luogu P4168 [Violet]蒲公英

[Violet]蒲公英 分块

BZOJ2724[Violet 6]蒲公英 分块+二分

bzoj2724: [Violet 6]蒲公英(分块)

[Violet]蒲公英