SP375 QTREE - Query on a tree (树剖)
Posted lykkk
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SP375 QTREE - Query on a tree (树剖)相关的知识,希望对你有一定的参考价值。
题目
解析
也就是个蓝题,因为比较长
树剖裸题(基本上),单点修改,链上查询。
可以看到这个题然我们对边进行操作,我们的树剖是对节点进行操作的,所以我们考虑把边权转移到点权上。
发现我们节点的点权是连向它的边的边权,所以我们要修改或查询边权的话,我们修改或查询的实际上是其连向点的点权,
假设我们要修改1-4之间的这两条边
我们修改的实际上就是这两个点
所以我们链上修改或查询的时候,不要修改或查询深度较浅的节点。
然后这是SPOJ上的题,我不知道为啥我写c++会挂,经king丨帝御威大佬的指点才用c过的,%%%
代码
#include <ctype.h>
#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#define lson rt << 1
#define rson rt << 1 | 1
#define N 10007
int t, n, m, num, cnt;
int head[N], a[N], w[N], son[N], size[N], f[N], top[N], dep[N], id[N], mx[N << 2];
class node {
public :
int nx, v, w;
} e[N << 2];
void add(int u, int v, int w) {
e[++num].nx = head[u], e[num].v = v, e[num].w = w, head[u] = num;
}
int max(int a, int b) { return a > b ? a : b; }
#define swap(A, B) { int __T = A; A = B; B = __T; }
void dfs1(int u, int fa) {
size[u] = 1;
for (int i = head[u]; ~i; i = e[i].nx) {
int v = e[i].v;
if (v != fa) {
dep[v] = dep[u] + 1;
f[v] = u;
w[v] = e[i].w; //边权赋给点
dfs1(v, u);
size[u] += size[v];
if (size[v] > size[son[u]]) son[u] = v;
}
}
}
void dfs2(int u, int t) {
id[u] = ++cnt;
a[cnt] = w[u];
top[u] = t;
if (son[u]) dfs2(son[u], t);
for (int i = head[u]; ~i; i = e[i].nx) {
int v = e[i].v;
if (v != f[u] && v != son[u]) dfs2(v, v);
}
}
void pushup(int rt) {
mx[rt] = max(mx[lson], mx[rson]);
}
void build(int l, int r, int rt) {
if (l == r) {
mx[rt] = a[l];
return ;
}
int m = (l + r) >> 1;
build(l, m, lson);
build(m + 1, r, rson);
pushup(rt);
}
void update(int L, int c, int l, int r, int rt) {
if (l == r) {
mx[rt] = c;
return ;
}
int m = (l + r) >> 1;
if (L <= m) update(L, c, l, m, lson);
else update(L, c, m + 1, r, rson);
pushup(rt);
}
int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return mx[rt];
int m = (l + r) >> 1, ans = -0x3f3f3f3f;
if (L <= m) ans = max(ans, query(L, R, l, m, lson));
if (R > m) ans = max(ans, query(L, R, m + 1, r, rson));
return ans;
}
int query_chain(int x, int y) {
int fx = top[x], fy = top[y], ans = -0x3f3f3f3f;
while (fx != fy) {
if (dep[fx] < dep[fy]) {
swap(x, y);
swap(fx, fy);
}
ans = max(ans, query(id[fx], id[x], 1, cnt, 1));
x = f[fx], fx = top[x];
}
if (id[x] > id[y]) swap(x, y);
ans = max(ans, query(id[x] + 1, id[y], 1, cnt, 1));
/*在这里注意是id[x]+1->id[y]
不要算上开始的点
*/
return ans;
}
int main() {
scanf("%d", &t);
while (t -- ) {
num = cnt = 0;
memset(head, -1, sizeof(head));
memset(dep, 0, sizeof(dep));
memset(id, 0, sizeof(id));
memset(a, 0, sizeof(a));
memset(w, 0, sizeof(w));
memset(top, 0, sizeof(top));
memset(size, 0, sizeof(size));
memset(e, 0, sizeof(e));
memset(mx, 0, sizeof(mx));
memset(son, 0, sizeof(son));
memset(f, 0, sizeof(f));
scanf("%d", &n);
for (int i = 1, x, y, z; i < n; ++i) {
scanf("%d%d%d", &x, &y, &z);
add(x, y, z), add(y, x, z);
}
dfs1(1, 0), dfs2(1, 1);
build(1, n, 1);
char s[20];
int x, y;
while (1) {
scanf("%s", s);
if (s[0] == 'D') break;
else if (s[0] == 'C') {
scanf("%d%d", &x, &y);
x = dep[e[x << 1].v] > dep[e[(x << 1) - 1].v] ? e[x << 1].v : e[(x << 1) - 1].v;
/*这里是判断修改哪个点*/
update(id[x], y, 1, n, 1);
} else {
scanf("%d%d", &x, &y);
printf("%d\\n", query_chain(x, y));
}
}
}
return 0;
}
以上是关于SP375 QTREE - Query on a tree (树剖)的主要内容,如果未能解决你的问题,请参考以下文章
SP375 QTREE - Query on a tree (树剖)
spoj375 QTREE - Query on a tree
[spoj 375]QTREE - Query on a tree[树链剖分]
SP913 QTREE2 - Query on a tree II