差分约束
Posted lm-lbg
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了差分约束相关的知识,希望对你有一定的参考价值。
众所周知,差分约束有m个不等式,要找到一组解(本题中是非负解)满足所有约束,因为不等式都是差分形式,又要满足所有约束,所以叫差分约束。
我们采取这样的方式建边:对于ai - aj <= b,从j向i连一条边权为b的边
原因:ai - aj <= b十分形似 dis[i] - dis[j] <= b,即dis[i] <= dis[j] + b,在一个有最短路的图中,对于每一个点均满足这个等式,所以我们想把ai转化为i的最短路,最后求出的最短路就是答案
关于无解:当图中存在负环即无解
一方面,如果有负环,原图中没有最短路,因此无解。从另一个角度考虑,如果有负环,则意味着永远不可能满足不等式(dis[i]和dis[j]都可以无穷小),所以无解(不懂的话可以画一个有两个点的图试一试
细节:防止图不联通的情况,我们建一个超级源点S,由S向其他点连一条边权为0的边,图即联通
spfa判负环就不说了
#include<cstdio> #include<algorithm> #include<iostream> #include<queue> #include<cstring> using namespace std; inline int read() { int ans = 0,op = 1; char ch = getchar(); while(ch < ‘0‘ || ch > ‘9‘) { if(ch == ‘-‘) op = -1; ch = getchar(); } while(ch >= ‘0‘ && ch <= ‘9‘) { (ans *= 10) += ch - ‘0‘; ch = getchar(); } return ans * op; } const int maxn = 2005; struct egde { int to,next,cost; }e[maxn * 10]; int fir[maxn],alloc; inline void adde(int u,int v,int w) { e[++alloc].next = fir[u]; fir[u] = alloc; e[alloc].to = v; e[alloc].cost = w; } int n,m; int dis[maxn],popst[maxn],minm; bool instack[maxn]; void spfa(int s) { queue<int> q; memset(dis,0x3f,sizeof(dis)); dis[s] = 0; q.push(s); instack[s] = 1; while(q.size()) { int u = q.front(); q.pop(); popst[u]++; if(popst[u] > n - 1) { printf("NO SOLUTION"); return;} instack[u] = 0; for(int i = fir[u];i;i = e[i].next) { int v = e[i].to,w = e[i].cost; if(dis[v] > dis[u] + w) { dis[v] = dis[u] + w; if(!instack[v]) q.push(v),instack[v] = 1; } } } for(int i = 1;i <= n;i++) minm = min(minm,dis[i]); for(int i = 1;i <= n;i++) printf("%d\n",dis[i] - minm); } int main() { n = read(),m = read(); for(int i = 1;i <= m;i++) { int u = read(),v = read(),w = read(); adde(v,u,w); } for(int i = 1;i <= n;i++) adde(n + 1,i,0); spfa(n + 1); }
以上是关于差分约束的主要内容,如果未能解决你的问题,请参考以下文章